
Coinsult

Advanced Manual

Smart Contract Audit
October 26, 2022

 CoinsultAudits

 info@coinsult.net

 coinsult.net

Audit requested by

Eternity Staking
0x21ef3122c35301f9eff3c150640dfe13709022fc

Request your audit at coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

Table of Contents
1. Audit Summary

1.1 Audit scope

1.2 Tokenomics

1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues

3.2 Low-risk issues

3.3 Medium-risk issues

3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check

5.2 Contract Pausability Check

5.3 Max Transaction Amount Check

5.4 Exclude From Fees Check

5.5 Ability to Mint Check

5.6 Ability to Blacklist Check

5.7 Owner Privileges Check

6. Notes
6.1 Notes by Coinsult

6.2 Notes by Eternity Staking

7. Contract Snapshot

8. Website Review

9. Certificate of Proof

Eternity Staking / Security Audit

Audit Summary
Project Name

Website

Blockchain

Smart Contract Language

Contract Address

Audit Method

Date of Audit

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Eternity Staking / Security Audit

Eternity Staking

https://www.eternityprotocol.net/

Binance Smart Chain

Solidity

0x21ef3122c35301f9eff3c150640dfe13709022fc

Static Analysis, Manual Review

26 October 2022

https://www.eternityprotocol.net/

Audit Scope
Source Code

Coinsult was comissioned by Eternity Staking to perform an audit based on the following code:

https://bscscan.com/address/0x21ef3122c35301f9eff3c150640dfe13709022fc#code

Note that we only audited the code available to us on this URL at the time of the audit. If the URL
is not from any block explorer (main net), it may be subject to change. Always check the contract
address on this audit report and compare it to the token you are doing research for.

Ownership held by SAFU dev Trynos

Tokenomics

Not available

Eternity Staking / Security Audit

Audit Method
Coinsult’s manual smart contract audit is an extensive methodical examination and analysis of
the smart contract’s code that is used to interact with the blockchain. This process is conducted
to discover errors, issues and security vulnerabilities in the code in order to suggest
improvements and ways to fix them.

 Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We
use automated tools that scan the contract for security vulnerabilities such as integer-overflow,
integer-underflow, out-of-gas-situations, unchecked transfers, etc.

 Manual Code Review

Coinsult’s manual code review involves a human looking at source code, line by line, to find
vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated
tools are faster but they cannot take the developer’s intentions and general business logic into
consideration.

 Used Tools

 Slither: Solidity static analysis framework
 Remix: IDE Developer Tool
 CWE: Common Weakness Enumeration
 SWC: Smart Contract Weakness Classification and Test Cases
 DEX: Testnet Blockchains

Eternity Staking / Security Audit

Risk Classification
Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher
the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status

Total

Pending

Acknowledged

Resolved

Eternity Staking / Security Audit

Description

Does not compromise the functionality of the contract in any way

Won't cause any problems, but can be adjusted for improvement

Will likely cause problems and it is recommended to adjust

Will definitely cause problems, this needs to be adjusted

Description

Total amount of issues within this category

Risks that have yet to be addressed by the team

The team is aware of the risks but does not resolve them

The team has resolved and remedied the risk

Disclaimer
This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a
detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered
investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

Eternity Staking / Security Audit

Global Overview
Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Eternity Staking / Security Audit

Total Pending Acknowledged Resolved

0 0 0 0

5 5 0 0

0 0 0 0

0 0 0 0

Error Code

CS-01

 Low-Risk: Could be fixed, will not bring problems.

Wrong comments

//30 days//30 days

pooldatapooldata[[77]]..lockupDuration lockupDuration == 77;;

pooldatapooldata[[77]]..returnPer returnPer == 1500015000;; // 150%// 150%

//90 days//90 days

pooldatapooldata[[3030]]..lockupDuration lockupDuration == 3030;;

pooldatapooldata[[3030]]..returnPer returnPer == 3000030000;; // 300%// 300%

Recommendation
Add the right comments, or change the values of the lockup duration.

Eternity Staking / Security Audit

Description

Wrong comments

https://cwe.mitre.org/data/definitions/841.html

Error Code

SLT: 078

 Low-Risk: Could be fixed, will not bring problems.

Too many digits
Literals with many digits are difficult to read and review.

uint256 stakeTime uint256 stakeTime == block block..timestamptimestamp..subsub((orderInfoorderInfo..starttimestarttime));;

uint256 totalReward uint256 totalReward == orderInfo orderInfo..amountamount..mulmul((stakeTimestakeTime))..mulmul((orderInfoorderInfo..returnPerreturnPer))..divdiv((1000010000**365365**8640086400));;

uint256 claimAvailableNow uint256 claimAvailableNow == totalReward totalReward..subsub((orderInfoorderInfo..claimedRewardclaimedReward));;

returnreturn claimAvailableNow claimAvailableNow;;

Recommendation
Use: Ether suffix, Time suffix, or The scientific notation

Exploit scenario

contract MyContractcontract MyContract{{

 uint 1_ether uint 1_ether == 1000000000000000000010000000000000000000;;

}}

While 1_ether looks like 1 ether, it is 10 ether. As a result, it’s likely to be used incorrectly.

Eternity Staking / Security Audit

Description

Conformance to numeric notation best practices

https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#ether-units
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#time-units
https://solidity.readthedocs.io/en/latest/types.html#rational-and-integer-literals
https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits

Error Code

SLT: 056

 Low-Risk: Could be fixed, will not bring problems.

No zero address validation for some functions
Detect missing zero address validation.

function function setTokensetToken((IERC20 _tokenIERC20 _token)) externalexternal onlyOwner onlyOwner {{

 token token == _token _token;;

}}

Recommendation
Check that the new address is not zero.

Exploit scenario

contract C contract C {{

 modifier onlyAdmin modifier onlyAdmin {{

 ifif ((msgmsg..sender sender !=!= owner owner)) throwthrow;;

 _ _;;

 }}

 function function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin onlyAdmin externalexternal {{

 owner owner == newOwner newOwner;;

 }}

}}

Bob calls updateOwner without specifying the newOwner, soBob loses ownership of the contract.

Eternity Staking / Security Audit

Description

Missing Zero Address Validation

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

Error Code

SWC-104

 Low-Risk: Could be fixed, will not bring problems.

Unchecked transfer
The return value of an external transfer/transferFrom call is not checked.

function function withdrawOtherTokenswithdrawOtherTokens((IERC20 _tokenIERC20 _token)) externalexternal onlyOwner onlyOwner {{

 requirerequire((IERC20IERC20((_token_token)) !=!= IERC20IERC20((tokentoken)),, "Can't withdraw reward token!""Can't withdraw reward token!"));;

 uint256 contract_balance uint256 contract_balance == IERC20IERC20((_token_token))..balanceOfbalanceOf((addressaddress((thisthis))));;

 IERC20IERC20((_token_token))..transfertransfer((addressaddress((ownerowner(()))) ,, contract_balance contract_balance));;

}}

Recommendation
Use SafeERC20, or ensure that the transfer/transferFrom return value is checked.

Exploit scenario

contract Token contract Token {{

 function function transferFromtransferFrom((address _fromaddress _from,, address _to address _to,, uint256 _value uint256 _value)) publicpublic returnsreturns ((bool successbool success));;

}}

contract MyBankcontract MyBank{{

 mappingmapping((address address ==>> uint uint)) balances balances;;

 Token token Token token;;

 function function depositdeposit((uint amountuint amount)) publicpublic{{

 token token..transferFromtransferFrom((msgmsg..sendersender,, addressaddress((thisthis)),, amount amount));;

 balances balances[[msgmsg..sendersender]] +=+= amount amount;;

 }}

}}

Several tokens do not revert in case of failure and return false. If one of these tokens is used
in MyBank, deposit will not revert if the transfer fails, and an attacker can call deposit for free..

Eternity Staking / Security Audit

Description

CWE-252: Unchecked Return Value

https://cwe.mitre.org/data/definitions/252.html

Error Code

SLT: 054

 Low-Risk: Could be fixed, will not bring problems.

Missing events arithmetic
Detect missing events for critical arithmetic parameters.

function function setTokensetToken((IERC20 _tokenIERC20 _token)) externalexternal onlyOwner onlyOwner {{

 token token == _token _token;;

}}

Recommendation
Emit an event for critical parameter changes.

Exploit scenario

contract C contract C {{

 modifier onlyAdmin modifier onlyAdmin {{

 ifif ((msgmsg..sender sender !=!= owner owner)) throwthrow;;

 _ _;;

 }}

 function function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin onlyAdmin externalexternal {{

 owner owner == newOwner newOwner;;

 }}

}}

updateOwner() has no event, so it is difficult to track off-chain changes in the buy price.

Eternity Staking / Security Audit

Description

Missing Events Arithmetic

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

Other Owner Privileges Check

Error Code

CEN-100

Coinsult lists all important contract methods which the owner can interact with.

 Owner can set emergency withdraw fees to 35% max

 Owner can set token

 Owner can toggle staking

 Owner can withdraw tokens from the contract, not the reward token

Eternity Staking / Security Audit

Description

Centralization: Operator Priviliges

Notes
Notes by Eternity Staking

No notes provided by the team.

Notes by Coinsult

No notes provided by Coinsult

Eternity Staking / Security Audit

Contract Snapshot
This is how the constructor of the contract looked at the time of auditing the smart contract.

contract EternityStaking contract EternityStaking isis ReentrancyGuard ReentrancyGuard,, Ownable Ownable {{

 using SafeMath using SafeMath forfor uint256 uint256;;

 using SafeERC20 using SafeERC20 forfor IERC20 IERC20;;

 struct PoolInfo struct PoolInfo {{

 uint256 lockupDuration uint256 lockupDuration;;

 uint256 returnPer uint256 returnPer;;

 }}

 struct OrderInfo struct OrderInfo {{

 address beneficiary address beneficiary;;

 uint256 amount uint256 amount;;

 uint256 lockupDuration uint256 lockupDuration;;

 uint256 returnPer uint256 returnPer;;

 uint256 starttime uint256 starttime;;

 uint256 endtime uint256 endtime;;

 uint256 claimedReward uint256 claimedReward;;

 bool claimed bool claimed;;

 }}

 IERC20 IERC20 publicpublic token token;;

 bool bool publicpublic started started == truetrue;;

 uint256 uint256 privateprivate latestOrderId latestOrderId;;

 uint256 uint256 publicpublic emergencyWithdrawFees emergencyWithdrawFees;; // 10% ~ 1000// 10% ~ 1000

 uint256 uint256 publicpublic totalStake totalStake;;

 uint256 uint256 publicpublic totalWithdrawal totalWithdrawal;;

 uint256 uint256 publicpublic totalRewardsDistribution totalRewardsDistribution;;

 uint256 uint256 publicpublic totalRewardPending totalRewardPending;;

 mappingmapping((uint256 uint256 ==>>; PoolInfo PoolInfo)) publicpublic pooldata pooldata;;

 /// @dev balanceOf[investor] = balance/// @dev balanceOf[investor] = balance

 mappingmapping((address address ==>>; uint256 uint256)) publicpublic balanceOf balanceOf;;

 mappingmapping((address address ==>>; uint256 uint256)) publicpublic totalRewardEarn totalRewardEarn;;

 mappingmapping((uint256 uint256 ==>>; OrderInfo OrderInfo)) publicpublic orders orders;;

 mappingmapping((address address ==>>; uint256 uint256[[]])) privateprivate orderIds orderIds;;

 constructorconstructor((

 address _token address _token,,

 bool _started bool _started,,

i i hd

Eternity Staking / Security Audit

Website Review
Coinsult checks the website completely manually and looks for visual, technical and textual errors. We
also look at the security, speed and accessibility of the website. In short, a complete check to see if the
website meets the current standard of the web development industry.

Type of check

Mobile friendly?

Contains jQuery errors?

Is SSL secured?

Contains spelling errors?

Eternity Staking / Security Audit

Description

 The website is mobile friendly

 The website does not contain jQuery errors

 The website is SSL secured

 The website does not contain spelling errors

Certificate of Proof
 Not KYC verified by Coinsult

Eternity Staking
Audited by Coinsult.net

Date: 26 October 2022
 Advanced Manual Smart Contract Audit

Eternity Staking / Security Audit

Coinsult

End of report

Smart Contract Audit
 CoinsultAudits

 info@coinsult.net

 coinsult.net

Request your smart contract audit / KYC

t.me/coinsult_tg

coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

