
Coinsult

Advanced Manual

Smart Contract Audit
October 18, 2022

 CoinsultAudits

 info@coinsult.net

 coinsult.net

Audit requested by

Floki Christmas
0x2679a9862ac79d03e7e9f00ca8abfbb6fca4ca1d

Request your audit at coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

Table of Contents
1. Audit Summary

1.1 Audit scope

1.2 Tokenomics

1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues

3.2 Low-risk issues

3.3 Medium-risk issues

3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check

5.2 Contract Pausability Check

5.3 Max Transaction Amount Check

5.4 Exclude From Fees Check

5.5 Ability to Mint Check

5.6 Ability to Blacklist Check

5.7 Owner Privileges Check

6. Notes
6.1 Notes by Coinsult

6.2 Notes by Floki Christmas

7. Contract Snapshot

8. Website Review

9. Certificate of Proof

Floki Christmas / Security Audit

Audit Summary
Project Name

Website

Blockchain

Smart Contract Language

Contract Address

Audit Method

Date of Audit

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Floki Christmas / Security Audit

Floki Christmas

https://flokichristmas.com/

Binance Smart Chain

Solidity

0x2679a9862ac79d03e7e9f00ca8abfbb6fca4ca1d

Static Analysis, Manual Review

18 October 2022

https://flokichristmas.com/

Audit Scope
Source Code

Coinsult was comissioned by Floki Christmas to perform an audit based on the following code:

https://bscscan.com/address/0x2679a9862ac79d03e7e9f00ca8abfbb6fca4ca1d#code

Note that we only audited the code available to us on this URL at the time of the audit. If the URL
is not from any block explorer (main net), it may be subject to change. Always check the contract
address on this audit report and compare it to the token you are doing research for.

Tokenomics

Rank Address Quantity (Token) Percentage

1 0x23ee3660fef71046c5fd50cbeef063ca711ee6a4 300,000,000,000 50.0000%

2 0x7be1ec7e9eec1fb030a543c7b6772178a7805e22 180,000,000,000 30.0000%

3 0xde0bc8f4177c3971666b2b457a4909ab9ccc8707 50,000,000,000 8.3333%

4 0x5d7a8d72739e8509406effb11e873b481bfd204a 50,000,000,000 8.3333%

5 0x3a55008434824d7ef187fa481e7307919090426d 20,000,000,000 3.3333%

Floki Christmas / Security Audit

https://bscscan.com/token/0x2679a9862ac79d03e7e9f00ca8abfbb6fca4ca1d?a=0x23ee3660fef71046c5fd50cbeef063ca711ee6a4
https://bscscan.com/token/0x2679a9862ac79d03e7e9f00ca8abfbb6fca4ca1d?a=0x7be1ec7e9eec1fb030a543c7b6772178a7805e22
https://bscscan.com/token/0x2679a9862ac79d03e7e9f00ca8abfbb6fca4ca1d?a=0xde0bc8f4177c3971666b2b457a4909ab9ccc8707
https://bscscan.com/token/0x2679a9862ac79d03e7e9f00ca8abfbb6fca4ca1d?a=0x5d7a8d72739e8509406effb11e873b481bfd204a
https://bscscan.com/token/0x2679a9862ac79d03e7e9f00ca8abfbb6fca4ca1d?a=0x3a55008434824d7ef187fa481e7307919090426d

Audit Method
Coinsult’s manual smart contract audit is an extensive methodical examination and analysis of
the smart contract’s code that is used to interact with the blockchain. This process is conducted
to discover errors, issues and security vulnerabilities in the code in order to suggest
improvements and ways to fix them.

 Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We
use automated tools that scan the contract for security vulnerabilities such as integer-overflow,
integer-underflow, out-of-gas-situations, unchecked transfers, etc.

 Manual Code Review

Coinsult’s manual code review involves a human looking at source code, line by line, to find
vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated
tools are faster but they cannot take the developer’s intentions and general business logic into
consideration.

 Used Tools

 Slither: Solidity static analysis framework
 Remix: IDE Developer Tool
 CWE: Common Weakness Enumeration
 SWC: Smart Contract Weakness Classification and Test Cases
 DEX: Testnet Blockchains

Floki Christmas / Security Audit

Risk Classification
Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher
the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status

Total

Pending

Acknowledged

Resolved

Floki Christmas / Security Audit

Description

Does not compromise the functionality of the contract in any way

Won't cause any problems, but can be adjusted for improvement

Will likely cause problems and it is recommended to adjust

Will definitely cause problems, this needs to be adjusted

Description

Total amount of issues within this category

Risks that have yet to be addressed by the team

The team is aware of the risks but does not resolve them

The team has resolved and remedied the risk

Disclaimer
This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a
detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered
investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

Floki Christmas / Security Audit

Global Overview
Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Centralization Risks

Coinsult checked the following privileges:

Contract Privilege

Owner can mint?

Owner can blacklist?

Owner can set fees > 25%?

Owner can exclude from fees?

Owner can pause trading?

Owner can set Max TX amount?

More owner priviliges are listed later in the report.

Floki Christmas / Security Audit

Total Pending Acknowledged Resolved

0 0 0 0

3 0 3 0

0 0 0 0

0 0 0 0

Description

 Owner cannot mint new tokens

 Owner cannot blacklist addresses

 Owner cannot set the sell fee to 25% or higher

 Owner can exclude from fees

 Owner cannot pause the contract

 Owner cannot set max transaction amount

Error Code

SWC-107

 Low-Risk: Could be fixed, will not bring problems.

Contract contains Reentrancy vulnerabilities
Additional information: This combination increases risk of malicious intent. While it may be justified by
some complex mechanics (e.g. rebase, reflections, buyback).

function function _transfer_transfer((

 address from address from,,

 address address toto,,

 uint256 amount uint256 amount

)) internalinternal overrideoverride {{

 requirerequire((from from !=!= addressaddress((00)),, "ERC20: transfer from the zero address""ERC20: transfer from the zero address"));;

 requirerequire((toto !=!= addressaddress((00)),, "ERC20: transfer to the zero address""ERC20: transfer to the zero address"));;

 requirerequire((!!_isBlacklisted_isBlacklisted[[fromfrom]] & &;&&; !!_isBlacklisted_isBlacklisted[[toto]],, 'Blacklisted address''Blacklisted address'));;

 ifif((amount amount ==== 00)) {{

 supersuper.._transfer_transfer((fromfrom,, toto,, 00));;

 returnreturn;;

 }}

 ifif((automatedMarketMakerPairsautomatedMarketMakerPairs[[toto]] & &;&&; ((!!_isExcludedFromMaxTx_isExcludedFromMaxTx[[fromfrom]])) & &;&&; ((!!_isExcludedFr_isExcludedFr

Recommendation
Apply the check-effects-interactions pattern.

Exploit scenario

function function withdrawBalancewithdrawBalance(()){{

 // send userBalance[msg.sender] Ether to msg.sender// send userBalance[msg.sender] Ether to msg.sender

 // if mgs.sender is a contract, it will call its fallback function// if mgs.sender is a contract, it will call its fallback function

 ifif((!! ((msgmsg..sendersender..callcall..valuevalue((userBalanceuserBalance[[msgmsg..sendersender]]))(()))))){{

 throwthrow;;

 }}

 userBalance userBalance[[msgmsg..sendersender]] == 00;;

}}

Bob uses the re-entrancy bug to call withdrawBalance two times, and withdraw more than its initial
deposit to the contract.

Floki Christmas / Security Audit

Description

CWE-841: Improper Enforcement of Behavioral Workflow

https://cwe.mitre.org/data/definitions/841.html

Error Code

SWC-116

 Low-Risk: Could be fixed, will not bring problems.

Avoid relying on block.timestamp
block.timestamp can be manipulated by miners.

function function canAutoClaimcanAutoClaim((uint256 lastClaimTimeuint256 lastClaimTime)) privateprivate view view returnsreturns ((boolbool)) {{

		 ifif((lastClaimTime >lastClaimTime >; block block..timestamptimestamp)) {{

	 		 	 returnreturn falsefalse;;

		 }}

		 returnreturn block block..timestamptimestamp..subsub((lastClaimTimelastClaimTime)) > >;== claimWait claimWait;;

}}

Recommendation
Do not use block.timestamp, now or blockhash as a source of randomness

Exploit scenario

contract Game contract Game {{

 uint reward_determining_number uint reward_determining_number;;

 function function guessingguessing(()) externalexternal{{

 reward_determining_number reward_determining_number == uint256uint256((blockblock..blockhashblockhash((1000010000)))) %% 1010;;

 }}

}}

Eve is a miner. Eve calls guessing and re-orders the block containing the transaction. As a result, Eve
wins the game.

Floki Christmas / Security Audit

Description

CWE-829: Inclusion of Functionality from Untrusted Control Sphere

https://cwe.mitre.org/data/definitions/829.html

Error Code

SLT: 054

 Low-Risk: Could be fixed, will not bring problems.

Missing events arithmetic
Detect missing events for critical arithmetic parameters.

function function setRewardsFeesetRewardsFee((uint256 _rewardFeeuint256 _rewardFee,, uint256 _liquidityFee uint256 _liquidityFee,, uint256 _marketingFee uint256 _marketingFee,, uint256 _lotter uint256 _lotter
 BUSDRewardsFee BUSDRewardsFee == _rewardFee _rewardFee;;

 liquidityFee liquidityFee == _liquidityFee _liquidityFee;;

 marketingFee marketingFee == _marketingFee _marketingFee;;

 lotteryFee lotteryFee == _lotteryFee _lotteryFee;;

 totalFees totalFees == BUSDRewardsFee BUSDRewardsFee..addadd((liquidityFeeliquidityFee))..addadd((marketingFeemarketingFee))..addadd((lotteryFeelotteryFee));;

 requirerequire((totalFees <totalFees <;== 2020,, " ";Fees Must be Fees Must be 2020%% Or less" Or less";));;

}}

Recommendation
Emit an event for critical parameter changes.

Exploit scenario

contract C contract C {{

 modifier onlyAdmin modifier onlyAdmin {{

 ifif ((msgmsg..sender sender !=!= owner owner)) throwthrow;;

 _ _;;

 }}

 function function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin onlyAdmin externalexternal {{

 owner owner == newOwner newOwner;;

 }}

}}

updateOwner() has no event, so it is difficult to track off-chain changes in the buy price.

Floki Christmas / Security Audit

Description

Missing Events Arithmetic

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

Maximum Fee Limit Check

Error Code

CEN-01

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It
is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even
stop trading when the fees are set too high.

Type of fee

Transfer fee

Buy fee

Sell fee

Type of fee

Max transfer fee

Max buy fee

Max sell fee

Function

function function setRewardsFeesetRewardsFee((uint256 _rewardFeeuint256 _rewardFee,, uint256 _liquidityFee uint256 _liquidityFee,, uint256 _marketingFee uint256 _marketingFee,, uint256 _lotter uint256 _lotter
 BUSDRewardsFee BUSDRewardsFee == _rewardFee _rewardFee;;

 liquidityFee liquidityFee == _liquidityFee _liquidityFee;;

 marketingFee marketingFee == _marketingFee _marketingFee;;

 lotteryFee lotteryFee == _lotteryFee _lotteryFee;;

 totalFees totalFees == BUSDRewardsFee BUSDRewardsFee..addadd((liquidityFeeliquidityFee))..addadd((marketingFeemarketingFee))..addadd((lotteryFeelotteryFee));;

 requirerequire((totalFees <totalFees <;== 2020,, " ";Fees Must be Fees Must be 2020%% Or less" Or less";));;

}}

Floki Christmas / Security Audit

Description

Centralization: Operator Fee Manipulation

Description

 Owner cannot set the transfer fee to 25% or higher

 Owner cannot set the buy fee to 25% or higher

 Owner cannot set the sell fee to 25% or higher

Description

20%

20%

20%

Contract Pausability Check

Error Code

CEN-02

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case,
users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check

Can owner pause the contract?

Floki Christmas / Security Audit

Description

Centralization: Operator Pausability

Description

 Owner cannot pause the contract

Max Transaction Amount Check

Error Code

CEN-03

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the
transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to
take place if they abuse this function.

Privilege Check

Can owner set max tx amount?

Floki Christmas / Security Audit

Description

Centralization: Operator Transaction Manipulation

Description

 Owner cannot set max transaction amount

Exclude From Fees Check

Error Code

CEN-04

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the
owner of the smart contract can exclude from fees, they could set high tax fees and exclude
themselves from fees and benefit from 0% trading fees. However, some smart contracts require this
function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check

Can owner exclude from fees?

Function

function function excludeFromFeesexcludeFromFees((address accountaddress account,, bool excluded bool excluded)) publicpublic onlyOwner onlyOwner {{

 requirerequire((_isExcludedFromFees_isExcludedFromFees[[accountaccount]] !=!= excluded excluded,, "FLOC: Account is already the value of 'excluded'"FLOC: Account is already the value of 'excluded'
 _isExcludedFromFees _isExcludedFromFees[[accountaccount]] == excluded excluded;;

 emit emit ExcludeFromFeesExcludeFromFees((accountaccount,, excluded excluded));;

}}

Floki Christmas / Security Audit

Description

Centralization: Operator Exclusion

Description

 Owner can exclude from fees

Ability To Mint Check

Error Code

CEN-05

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint
function, we refer to the token’s total supply as non-fixed, allowing the token owner to “mint” more
tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable
minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart
contract. With the help of the smart contract function, an unlimited number of tokens can be created
without spending additional energy or money.

Privilege Check

Can owner mint?

Floki Christmas / Security Audit

Description

Centralization: Operator Increase Supply

Description

 Owner cannot mint new tokens

Ability To Blacklist Check

Error Code

CEN-06

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart
contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not
allowed to interact with the smart contract.

This method can be abused by token owners to prevent certain / all holders from trading the token.
However, blacklists might be good for tokens that want to rule out certain addresses from interacting
with a smart contract.

Privilege Check

Can owner blacklist?

Floki Christmas / Security Audit

Description

Centralization: Operator Dissalows Wallets

Description

 Owner cannot blacklist addresses

Other Owner Privileges Check

Error Code

CEN-100

Coinsult lists all important contract methods which the owner can interact with.

 Owner can update dividend tracker

 Owner can update UniSwap Router

 Owner can update claimwait

Floki Christmas / Security Audit

Description

Centralization: Operator Priviliges

Notes
Notes by Floki Christmas

No notes provided by the team.

Notes by Coinsult

No notes provided by Coinsult

Floki Christmas / Security Audit

Contract Snapshot
This is how the constructor of the contract looked at the time of auditing the smart contract.

contract CrazyFLOC contract CrazyFLOC isis ERC20 ERC20,, Ownable Ownable {{

using SafeMath using SafeMath forfor uint256 uint256;;

IUniswapV2Router02 IUniswapV2Router02 publicpublic uniswapV2Router uniswapV2Router;;

address address publicpublic uniswapV2Pair uniswapV2Pair;;

bool bool privateprivate swapping swapping;;

FLOCDividendTracker FLOCDividendTracker publicpublic dividendTracker dividendTracker;;

address address publicpublic deadWallet deadWallet == 0x000000000000000000000000000000000000dEaD0x000000000000000000000000000000000000dEaD;;

address address publicpublic immutable BUSD immutable BUSD == addressaddress((0xe9e7CEA3DedcA5984780Bafc599bD69ADd087D560xe9e7CEA3DedcA5984780Bafc599bD69ADd087D56));;//BUSD//BUSD

uint256 uint256 publicpublic swapTokensAtAmount swapTokensAtAmount == 600000000600000000 ** ((1010****1818));;

uint256 uint256 publicpublic maxSellTransactionAmount maxSellTransactionAmount == 1200000000012000000000 ** ((1010****1818));; //0.5 %//0.5 %

mappingmapping((address address ==>>; bool bool)) publicpublic _isBlacklisted _isBlacklisted;;

uint256 uint256 publicpublic BUSDRewardsFee BUSDRewardsFee == 55;;

uint256 uint256 publicpublic liquidityFee liquidityFee == 22;;

uint256 uint256 publicpublic marketingFee marketingFee == 22;;

uint256 uint256 publicpublic lotteryFee lotteryFee == 11;;

uint256 uint256 publicpublic totalFees totalFees == BUSDRewardsFee BUSDRewardsFee..addadd((liquidityFeeliquidityFee))..addadd((marketingFeemarketingFee))..addadd((lotteryFeelotteryFee));;

address payable address payable publicpublic _marketingWalletAddress _marketingWalletAddress == payablepayable((0x80188eE19C706eb8FeC94be80e54e09b0217209A0x80188eE19C706eb8FeC94be80e54e09b0217209A));;

address payable address payable publicpublic _lotteryWalletAddress _lotteryWalletAddress == payablepayable((0xb58eF1872a315431220a5D4c0902875cA482855F0xb58eF1872a315431220a5D4c0902875cA482855F));;

// use by default 300,000 gas to process auto-claiming dividends// use by default 300,000 gas to process auto-claiming dividends

uint256 uint256 publicpublic gasForProcessing gasForProcessing == 300000300000;;

 // exlcude from fees and max transaction amount// exlcude from fees and max transaction amount

mappingmapping ((address address ==>>; bool bool)) privateprivate _isExcludedFromFees _isExcludedFromFees;;

// dd h i k k i f * * h dd

Floki Christmas / Security Audit

Website Review
Coinsult checks the website completely manually and looks for visual, technical and textual errors. We
also look at the security, speed and accessibility of the website. In short, a complete check to see if the
website meets the current standard of the web development industry.

Type of check

Mobile friendly?

Contains jQuery errors?

Is SSL secured?

Contains spelling errors?

Floki Christmas / Security Audit

Description

 The website is mobile friendly

 The website does not contain jQuery errors

 The website is SSL secured

 The website does not contain spelling errors

Certificate of Proof
 Not KYC verified by Coinsult

Floki Christmas
Audited by Coinsult.net

Date: 18 October 2022
 Advanced Manual Smart Contract Audit

Floki Christmas / Security Audit

Coinsult

End of report

Smart Contract Audit
 CoinsultAudits

 info@coinsult.net

 coinsult.net

Request your smart contract audit / KYC

t.me/coinsult_tg

coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

