
Coinsult

Advanced Manual
Smart Contract Audit
February 2, 2023

 CoinsultAudits

 info@coinsult.net

 coinsult.net

Audit requested by

MM token
Not Deployed on mainnet/testnet

Request your audit at coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

Table of Contents
1. Audit Summary

1.1 Audit scope

1.2 Tokenomics

1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues

3.2 Low-risk issues

3.3 Medium-risk issues

3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check

5.2 Contract Pausability Check

5.3 Max Transaction Amount Check

5.4 Exclude From Fees Check

5.5 Ability to Mint Check

5.6 Ability to Blacklist Check

5.7 Owner Privileges Check

6. Notes
6.1 Notes by Coinsult

6.2 Notes by MM token

7. Contract Snapshot

8. Website Review

9. Certificate of Proof

MM token / Security Audit

Audit Summary
Project Name

Website

Blockchain

Smart Contract Language

Contract Address

Audit Method

Date of Audit

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

MM token / Security Audit

MM token

https://mememonkeys.cc/

Binance Smart Chain

Solidity

Not Deployed on mainnet/testnet

Static Analysis, Manual Review

2 February 2023

https://mememonkeys.cc/

Audit Scope
Coinsult was comissioned by MM token to perform an audit based on the following code:

Not Deployed on mainnet/testnet

Note that we only audited the code available to us on this URL at the time of the audit. If the URL
is not from any block explorer (main net), it may be subject to change. Always check the contract
address on this audit report and compare it to the token you are doing research for.

Audit Method

Coinsult’s manual smart contract audit is an extensive methodical examination and analysis of
the smart contract’s code that is used to interact with the blockchain. This process is conducted
to discover errors, issues and security vulnerabilities in the code in order to suggest
improvements and ways to fix them.

Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We
use automated tools that scan the contract for security vulnerabilities such as integer-overflow,
integer-underflow, out-of-gas-situations, unchecked transfers, etc.

Manual Code Review

Coinsult’s manual code review involves a human looking at source code, line by line, to find
vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated
tools are faster but they cannot take the developer’s intentions and general business logic into
consideration.

Used tools

 Slither: Solidity static analysis framework
 Remix: IDE Developer Tool
 CWE: Common Weakness Enumeration
 SWC: Smart Contract Weakness Classification and Test Cases
 DEX: Testnet Blockchains

MM token / Security Audit

Risk Classification
Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher
the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status

Total

Pending

Acknowledged

Resolved

MM token / Security Audit

Description

Does not compromise the functionality of the contract in any way

Won't cause any problems, but can be adjusted for improvement

Will likely cause problems and it is recommended to adjust

Will definitely cause problems, this needs to be adjusted

Description

Total amount of issues within this category

Risks that have yet to be addressed by the team

The team is aware of the risks but does not resolve them

The team has resolved and remedied the risk

SWC Attack Analysis
The Smart Contract Weakness Classification Registry (SWC Registry) is an implementation of the
weakness classification scheme proposed in EIP-1470. It is loosely aligned to the terminologies
and structure used in the Common Weakness Enumeration (CWE) while overlaying a wide range
of weakness variants that are specific to smart contracts.

ID

SWC-100

SWC-101

SWC-102

SWC-103

SWC-104

SWC-105

SWC-106

SWC-107

SWC-108

SWC-109

SWC-110

SWC-111

SWC-112

SWC-113

SWC-114

SWC-115

MM token / Security Audit

Description Status

Function Default Visibility Passed

Integer Overflow and Underflow Passed

Outdated Compiler Version Passed

Floating Pragma Passed

Unchecked Call Return Value Passed

Unprotected Ether Withdrawal Passed

Unprotected SELFDESTRUCT Instruction Passed

Reentrancy Passed

State Variable Default Visibility Passed

Uninitialized Storage Pointer Passed

Assert Violation Passed

Use of Deprecated Solidity Functions Passed

Delegatecall to Untrusted Callee Passed

DoS with Failed Call Passed

Transaction Order Dependence Passed

Authorization through tx.origin Passed

https://github.com/ethereum/EIPs/issues/1469
https://cwe.mitre.org/

SWC-116

SWC-117

SWC-118

SWC-119

SWC-120

SWC-121

SWC-122

SWC-123

SWC-124

SWC-125

SWC-126

SWC-127

SWC-128

SWC-129

SWC-130

SWC-131

SWC-132

SWC-133

SWC-134

SWC-135

SWC-136

MM token / Security Audit

Block values as a proxy for time Passed

Signature Malleability Passed

Incorrect Constructor Name Passed

Shadowing State Variables Passed

Weak Sources of Randomness from Chain Attributes Passed

Missing Protection against Signature Replay Attacks Passed

Lack of Proper Signature Verification Passed

Requirement Violation Passed

Write to Arbitrary Storage Location Passed

Incorrect Inheritance Order Passed

Insufficient Gas Griefing Passed

Arbitrary Jump with Function Type Variable Passed

DoS With Block Gas Limit Passed

Typographical Error Passed

Right-To-Left-Override control character (U+202E) Passed

Presence of unused variables Passed

Unexpected Ether balance Passed

Hash Collisions With Multiple Variable Length Arguments Passed

Message call with hardcoded gas amount Passed

Code With No Effects Passed

Unencrypted Private Data On-Chain Passed

Global Overview
Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Centralization Risks

Coinsult checked the following privileges:

Contract Privilege

Owner can mint?

Owner can blacklist?

Owner can set fees > 25%?

Owner can exclude from fees?

Owner can pause trading?

Owner can set Max TX amount?

More owner priviliges are listed later in the report.

MM token / Security Audit

Total Pending Acknowledged Resolved

0 0 0 0

4 4 0 0

0 0 0 0

0 0 0 0

Description

 Owner cannot mint new tokens

 Owner cannot blacklist addresses

 Owner cannot set the sell fee to 25% or higher

 Owner can exclude from fees

 Owner cannot pause the contract

 Owner cannot set max transaction amount

Error Code

CWE-252

 Low-Risk: Could be fixed, will not bring problems.

Unchecked transfer
The return value of an external transfer/transferFrom call is not checked.

function function claimStuckTokensclaimStuckTokens((address tokenaddress token)) externalexternal onlyOwner onlyOwner {{
 requirerequire((token token !=!= addressaddress((thisthis)),, "Owner cannot claim native tokens""Owner cannot claim native tokens"));;
 ifif ((token token ==== addressaddress((0x00x0)))) {{
 payablepayable((msgmsg..sendersender))..transfertransfer((addressaddress((thisthis))..balancebalance));;
 returnreturn;;
 }}
 IERC20 ERC20token IERC20 ERC20token == IERC20IERC20((tokentoken));;
 uint256 balance uint256 balance == ERC20token ERC20token..balanceOfbalanceOf((addressaddress((thisthis))));;
 ERC20token ERC20token..transfertransfer((msgmsg..sendersender,, balance balance));;
}}

Recommendation
Use SafeERC20, or ensure that the transfer/transferFrom return value is checked.

Exploit scenario

contract Token contract Token {{
 function function transferFromtransferFrom((address _fromaddress _from,, address _to address _to,, uint256 _value uint256 _value)) publicpublic returnsreturns ((bool successbool success));;
}}
contract MyBankcontract MyBank{{
 mappingmapping((address address ==>> uint uint)) balances balances;;
 Token token Token token;;
 function function depositdeposit((uint amountuint amount)) publicpublic{{
 token token..transferFromtransferFrom((msgmsg..sendersender,, addressaddress((thisthis)),, amount amount));;
 balances balances[[msgmsg..sendersender]] +=+= amount amount;;
 }}
}}

Several tokens do not revert in case of failure and return false. If one of these tokens is used
in MyBank, deposit will not revert if the transfer fails, and an attacker can call deposit for free..

MM token / Security Audit

Description

Unchecked Return Value

https://cwe.mitre.org/data/definitions/252.html

Error Code

CS: 071

 Low-Risk: Could be fixed, will not bring problems.

Using safemath in Solidity 0.8.0+
SafeMath is generally not needed starting with Solidity 0.8, since the compiler now has built in overflow
checking.

library SafeMath library SafeMath {{
/**/**
 * @dev Returns the addition of two unsigned integers, with an overflow flag. * @dev Returns the addition of two unsigned integers, with an overflow flag.
 * *
 * _Available since v3.4._ * _Available since v3.4._
 */ */
function function tryAddtryAdd((uint256 auint256 a,, uint256 b uint256 b)) internalinternal pure pure returnsreturns ((boolbool,, uint256 uint256)) {{
 unchecked unchecked {{
 uint256 c uint256 c == a a ++ b b;;
 ifif ((c c << a a)) returnreturn ((falsefalse,, 00));;
 returnreturn ((truetrue,, c c));;
 }}
}}

/**/**
 * @dev Returns the substraction of two unsigned integers, with an overflow flag. * @dev Returns the substraction of two unsigned integers, with an overflow flag.

Recommendation
Check if you really need SafeMath and consider removing it.

MM token / Security Audit

Description

Using safemath in Solidity 0.8.0+

https://github.com/crytic/slither/wiki/Detector-Documentation#costly-operations-inside-a-loop

Error Code

CS: 016

 Low-Risk: Could be fixed, will not bring problems.

Initial Supply
When the contract is deployed, the contract deployer receives all of the initially created assets. Since
the deployer and/or contract owner can distribute tokens without consulting the community, this could
be a problem.

Recommendation
Private keys belonging to the employer and/or contract owner should be stored properly. The initial
asset allocation procedure should involve consultation with the community.

MM token / Security Audit

Description

Initial Supply

Error Code

CS: 017

 Low-Risk: Could be fixed, will not bring problems.

Reliance on third-parties
Interaction between smart contracts with third-party protocols like Uniswap and Pancakeswap. The
audit’s scope presupposes that third party entities will perform as intended and treats them as if they
were black boxes. In the real world, third parties can be hacked and used against you. Additionally,
improvements made by third parties may have negative effects, such as higher transaction costs or the
deprecation of older routers.

Recommendation
Regularly check third-party dependencies, and when required, reduce severe effects.

MM token / Security Audit

Description

Reliance on third-parties

Simulated transaction

Test Code

SIM-01

https://testnet.bscscan.com/tx/0x09154cc783f6cad1b2106408e834d224b4b5ef610ff74dce2ca3f8b16c237

MM token / Security Audit

Description

Testing a normal transfer

Maximum Fee Limit Check

Error Code

CEN-01

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It
is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even
stop trading when the fees are set too high.

Type of fee

Transfer fee

Buy fee

Sell fee

Type of fee

Max transfer fee

Max buy fee

Max sell fee

MM token / Security Audit

Description

Centralization: Operator Fee Manipulation

Description

 Owner cannot set the transfer fee to 25% or higher

 Owner cannot set the buy fee to 25% or higher

 Owner cannot set the sell fee to 25% or higher

Description

0%

10%

10%

Contract Pausability Check

Error Code

CEN-02

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case,
users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check

Can owner pause the contract?

MM token / Security Audit

Description

Centralization: Operator Pausability

Description

 Owner cannot pause the contract

Max Transaction Amount Check

Error Code

CEN-03

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the
transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to
take place if they abuse this function.

Privilege Check

Can owner set max tx amount?

MM token / Security Audit

Description

Centralization: Operator Transaction Manipulation

Description

 Owner cannot set max transaction amount

Exclude From Fees Check

Error Code

CEN-04

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the
owner of the smart contract can exclude from fees, they could set high tax fees and exclude
themselves from fees and benefit from 0% trading fees. However, some smart contracts require this
function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check

Can owner exclude from fees?

Function

function function excludeFromFeesexcludeFromFees((address accountaddress account,, bool excluded bool excluded)) externalexternal onlyOwner onlyOwner {{
 requirerequire((_isExcludedFromFees_isExcludedFromFees[[accountaccount]] !=!= excluded excluded,, "Account is already set to that state""Account is already set to that state"));;
 _isExcludedFromFees _isExcludedFromFees[[accountaccount]] == excluded excluded;;

 emit emit ExcludeFromFeesExcludeFromFees((accountaccount,, excluded excluded));;
}}

MM token / Security Audit

Description

Centralization: Operator Exclusion

Description

 Owner can exclude from fees

Ability To Mint Check

Error Code

CEN-05

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint
function, we refer to the token’s total supply as non-fixed, allowing the token owner to “mint” more
tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable
minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart
contract. With the help of the smart contract function, an unlimited number of tokens can be created
without spending additional energy or money.

Privilege Check

Can owner mint?

MM token / Security Audit

Description

Centralization: Operator Increase Supply

Description

 Owner cannot mint new tokens

Ability To Blacklist Check

Error Code

CEN-06

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart
contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not
allowed to interact with the smart contract.

This method can be abused by token owners to prevent certain / all holders from trading the token.
However, blacklists might be good for tokens that want to rule out certain addresses from interacting
with a smart contract.

Privilege Check

Can owner blacklist?

MM token / Security Audit

Description

Centralization: Operator Dissalows Wallets

Description

 Owner cannot blacklist addresses

Other Owner Privileges Check

Error Code

CEN-100

Coinsult lists all important contract methods which the owner can interact with.

 Owner can exclude addresses from dividends

 Owner can set minimum holding balance to be eligible for dividends

 Owner can update claimwait for dividends

MM token / Security Audit

Description

Centralization: Operator Priviliges

Notes
Notes by MM token

No notes provided by the team.

Notes by Coinsult

No notes provided by Coinsult

MM token / Security Audit

Contract Snapshot
This is how the constructor of the contract looked at the time of auditing the smart contract.

contract MM contract MM isis ERC20 ERC20,, Ownable Ownable {{
uint256 uint256 publicpublic charityFeeOnBuy charityFeeOnBuy;;
uint256 uint256 publicpublic liquidityFeeOnBuy liquidityFeeOnBuy;;
uint256 uint256 publicpublic treasuryFeeOnBuy treasuryFeeOnBuy;;
uint256 uint256 publicpublic rewardsFeeOnBuy rewardsFeeOnBuy;;

MM token / Security Audit

Website Review
Coinsult checks the website completely manually and looks for visual, technical and textual errors. We
also look at the security, speed and accessibility of the website. In short, a complete check to see if the
website meets the current standard of the web development industry.

Type of check

Mobile friendly?

Contains jQuery errors?

Is SSL secured?

Contains spelling errors?

MM token / Security Audit

Description

 The website is mobile friendly

 The website does not contain jQuery errors

 The website is SSL secured

 The website does not contain spelling errors

Certificate of Proof
 Not KYC verified by Coinsult

MM token
Audited by Coinsult.net

Date: 2 February 2023
 Advanced Manual Smart Contract Audit

MM token / Security Audit

Disclaimer
This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a
detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered
investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

MM token / Security Audit

Coinsult

End of report
Smart Contract Audit
 CoinsultAudits

 info@coinsult.net

 coinsult.net

Request your smart contract audit / KYC

t.me/coinsult_tg

coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

