
Coinsult

Advanced Manual

Smart Contract Audit
November 3, 2022

 CoinsultAudits

 info@coinsult.net

 coinsult.net

Audit requested by

NEB Storage

0x0194a9e46fee48b85e1cfafdb9d3ff9c4f2548ec

Request your audit at coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

Table of Contents
1. Audit Summary

1.1 Audit scope

1.2 Tokenomics

1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues

3.2 Low-risk issues

3.3 Medium-risk issues

3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check

5.2 Contract Pausability Check

5.3 Max Transaction Amount Check

5.4 Exclude From Fees Check

5.5 Ability to Mint Check

5.6 Ability to Blacklist Check

5.7 Owner Privileges Check

6. Notes
6.1 Notes by Coinsult

6.2 Notes by NEB Storage

7. Contract Snapshot

8. Website Review

9. Certificate of Proof

NEB Storage / Security Audit

Audit Summary
Project Name

Website

Blockchain

Smart Contract Language

Contract Address

Audit Method

Date of Audit

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

NEB Storage / Security Audit

NEB Storage

https://nebank.io/#/home

Binance Smart Chain

Solidity

0x0194a9e46fee48b85e1cfafdb9d3ff9c4f2548ec

Static Analysis, Manual Review

3 November 2022

https://nebank.io/#/home

Audit Scope
Source Code

Coinsult was comissioned by NEB Storage to perform an audit based on the following code:

https://bscscan.com/address/0x0194a9e46fee48b85e1cfafdb9d3ff9c4f2548ec#code

Note that we only audited the code available to us on this URL at the time of the audit. If the URL
is not from any block explorer (main net), it may be subject to change. Always check the contract
address on this audit report and compare it to the token you are doing research for.

Tokenomics

Not available

NEB Storage / Security Audit

Audit Method
Coinsult’s manual smart contract audit is an extensive methodical examination and analysis of
the smart contract’s code that is used to interact with the blockchain. This process is conducted
to discover errors, issues and security vulnerabilities in the code in order to suggest
improvements and ways to fix them.

 Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We
use automated tools that scan the contract for security vulnerabilities such as integer-overflow,
integer-underflow, out-of-gas-situations, unchecked transfers, etc.

 Manual Code Review

Coinsult’s manual code review involves a human looking at source code, line by line, to find
vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated
tools are faster but they cannot take the developer’s intentions and general business logic into
consideration.

 Used Tools

 Slither: Solidity static analysis framework
 Remix: IDE Developer Tool
 CWE: Common Weakness Enumeration
 SWC: Smart Contract Weakness Classification and Test Cases
 DEX: Testnet Blockchains

NEB Storage / Security Audit

Risk Classification
Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher
the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status

Total

Pending

Acknowledged

Resolved

NEB Storage / Security Audit

Description

Does not compromise the functionality of the contract in any way

Won't cause any problems, but can be adjusted for improvement

Will likely cause problems and it is recommended to adjust

Will definitely cause problems, this needs to be adjusted

Description

Total amount of issues within this category

Risks that have yet to be addressed by the team

The team is aware of the risks but does not resolve them

The team has resolved and remedied the risk

Disclaimer
This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a
detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered
investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

NEB Storage / Security Audit

Global Overview
Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

NEB Storage / Security Audit

Total Pending Acknowledged Resolved

0 0 0 0

3 0 3 0

2 0 2 0

0 0 0 0

Error Code

SLT: 056

 Low-Risk: Could be fixed, will not bring problems.

No zero address validation for some functions
Detect missing zero address validation.

function function addDevaddDev((address newDevaddress newDev)) publicpublic onlyOwner onlyOwner {{

 ((bool flagbool flag,,)) == isDevisDev((newDevnewDev));;

 requirerequire((!!flagflag,, "GValidator: already dev""GValidator: already dev"));;

 _devs _devs..pushpush((newDevnewDev));;

}}

Recommendation
Check that the new address is not zero.

Exploit scenario

contract C contract C {{

 modifier onlyAdmin modifier onlyAdmin {{

 ifif ((msgmsg..sender sender !=!= owner owner)) throwthrow;;

 _ _;;

 }}

 function function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin onlyAdmin externalexternal {{

 owner owner == newOwner newOwner;;

 }}

}}

Bob calls updateOwner without specifying the newOwner, soBob loses ownership of the contract.

NEB Storage / Security Audit

Description

Missing Zero Address Validation

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

Error Code

SWC-104

 Low-Risk: Could be fixed, will not bring problems.

Unchecked transfer
The return value of an external transfer/transferFrom call is not checked.

function function withdrawByTokenwithdrawByToken((

 address address toto,,

 address token address token,,

 uint256 amount uint256 amount

)) publicpublic onlyOwner onlyOwner {{

 ifif ((token token ==== addressaddress((00)))) {{

 payablepayable((toto))..transfertransfer((amountamount));;

 }} elseelse {{

 IERC20IERC20((tokentoken))..safeTransfersafeTransfer((toto,, amount amount));;

 }}

}}

Recommendation
Use SafeERC20, or ensure that the transfer/transferFrom return value is checked.

Exploit scenario

contract Token contract Token {{

 function function transferFromtransferFrom((address _fromaddress _from,, address _to address _to,, uint256 _value uint256 _value)) publicpublic returnsreturns ((bool successbool success));;

}}

contract MyBankcontract MyBank{{

 mappingmapping((address address ==>> uint uint)) balances balances;;

 Token token Token token;;

 function function depositdeposit((uint amountuint amount)) publicpublic{{

 token token..transferFromtransferFrom((msgmsg..sendersender,, addressaddress((thisthis)),, amount amount));;

 balances balances[[msgmsg..sendersender]] +=+= amount amount;;

 }}

}}

Several tokens do not revert in case of failure and return false. If one of these tokens is used
in MyBank, deposit will not revert if the transfer fails, and an attacker can call deposit for free..

NEB Storage / Security Audit

Description

CWE-252: Unchecked Return Value

https://cwe.mitre.org/data/definitions/252.html

Error Code

SLT: 054

 Low-Risk: Could be fixed, will not bring problems.

Missing events arithmetic
Detect missing events for critical arithmetic parameters.

function function setTokensetToken((uint256 tiduint256 tid,, address token address token)) publicpublic onlyOwner onlyOwner {{

 requirerequire((validTidvalidTid((tidtid)),, "tid invalid""tid invalid"));;

 _tokenList _tokenList[[tidtid]] == token token;;

}}

Recommendation
Emit an event for critical parameter changes.

Exploit scenario

contract C contract C {{

 modifier onlyAdmin modifier onlyAdmin {{

 ifif ((msgmsg..sender sender !=!= owner owner)) throwthrow;;

 _ _;;

 }}

 function function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin onlyAdmin externalexternal {{

 owner owner == newOwner newOwner;;

 }}

}}

updateOwner() has no event, so it is difficult to track off-chain changes in the buy price.

NEB Storage / Security Audit

Description

Missing Events Arithmetic

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

Error Code

CSM-01

 Medium-Risk: Should be fixed, could bring problems.

Potential OoG (Out-of-Gas) situation in addTokens()

function function addTokensaddTokens((addressaddress[[]] memory tokens memory tokens)) publicpublic onlyOwner onlyOwner {{

 forfor ((uint256 i uint256 i == 00;; i < i <; tokens tokens..lengthlength;; i i++++)) {{

 _tokenList _tokenList..pushpush((tokenstokens[[ii]]));;

 }}

}}

Recommendation
Caution is advised when you expect to have large arrays that grow over time. Actions that require
looping across the entire data structure should be avoided.
If you absolutely must loop over an array
of unknown size, then you should plan for it to potentially take multiple blocks, and therefore require
multiple transactions.

NEB Storage / Security Audit

Description

Potential OoG (Out-of-Gas) situation in addTokens()

Error Code

CSM-02

 Medium-Risk: Should be fixed, could bring problems.

Centralization Risk

function function depositdeposit((uint256 amountuint256 amount,, uint256 tid uint256 tid)) publicpublic {{

function function withdrawwithdraw((uint256 amountuint256 amount,, uint256 tid uint256 tid,, address address toto)) publicpublic onlyDevOrOwner onlyDevOrOwner {{

Recommendation
Everyone can deposit, but only dev or owner address can withdraw funds

NEB Storage / Security Audit

Description

Centralization Risk

Other Owner Privileges Check

Error Code

CEN-100

Coinsult lists all important contract methods which the owner can interact with.

Owner can set cold wallet

Owner can withdraw tokens from contract

NEB Storage / Security Audit

Description

Centralization: Operator Priviliges

Notes
Notes by NEB Storage

No notes provided by the team.

Notes by Coinsult

No notes provided by Coinsult

NEB Storage / Security Audit

Contract Snapshot
This is how the constructor of the contract looked at the time of auditing the smart contract.

pragma solidity ^pragma solidity ^0.80.8..00;;

contract Storage contract Storage isis Validator Validator {{

 using SafeERC20 using SafeERC20 forfor IERC20 IERC20;;

 address address publicpublic coldWallet coldWallet;;

 address address[[]] privateprivate _tokenList _tokenList;;

 event event DepositEventDepositEvent((address indexed accountaddress indexed account,, uint256 tid uint256 tid,, uint256 amount uint256 amount));;

 event event WithdrawEventWithdrawEvent((address indexed accountaddress indexed account,, uint256 tid uint256 tid,, uint256 amount uint256 amount));;

 constructorconstructor((address coldWallet_address coldWallet_)) {{

 coldWallet coldWallet == coldWallet_ coldWallet_;;

 _tokenList _tokenList..pushpush((addressaddress((00))));;

 }}

 receivereceive(()) externalexternal payable payable {{

 ifif ((msgmsg..sender sender ==== coldWallet coldWallet)) {{

 returnreturn;;

 }}

 uint256 amount uint256 amount == msg msg..valuevalue;;

 requirerequire((amount >amount >; 00,, "amount invalid""amount invalid"));;

 payablepayable((coldWalletcoldWallet))..transfertransfer((amountamount));;

 emit emit DepositEventDepositEvent((_msgSender_msgSender(()),, 00,, amount amount));;

 }}

 function function validTidvalidTid((uint256 tiduint256 tid)) publicpublic view view returnsreturns ((boolbool)) {{

 returnreturn tid tid 00,, "erc20 must use tid > 0""erc20 must use tid > 0"));;

 IERC20IERC20((_tokenList_tokenList[[tidtid]]))..safeTransferFromsafeTransferFrom((

 _msgSender_msgSender(()),,

 addressaddress((thisthis)),,

 amount amount

));;

 IERC20IERC20((_tokenList_tokenList[[tidtid]]))..safeTransfersafeTransfer((coldWalletcoldWallet,, amount amount));;

 emit emit DepositEventDepositEvent((_msgSender_msgSender(()),, tid tid,, amount amount));;

 }}

f i i hd (

NEB Storage / Security Audit

Website Review
Coinsult checks the website completely manually and looks for visual, technical and textual errors. We
also look at the security, speed and accessibility of the website. In short, a complete check to see if the
website meets the current standard of the web development industry.

Type of check

Mobile friendly?

Contains jQuery errors?

Is SSL secured?

Contains spelling errors?

NEB Storage / Security Audit

Description

 The website is mobile friendly

 The website does not contain jQuery errors

 The website is SSL secured

 The website does not contain spelling errors

Certificate of Proof
 Not KYC verified by Coinsult

NEB Storage
Audited by Coinsult.net

Date: 3 November 2022
 Advanced Manual Smart Contract Audit

NEB Storage / Security Audit

Coinsult

End of report

Smart Contract Audit
 CoinsultAudits

 info@coinsult.net

 coinsult.net

Request your smart contract audit / KYC

t.me/coinsult_tg

coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

