@ COi nsu lt Request your audit at coinsult.net

Advanced Manual
Smart Contract Audit

December 9, 2022

CoinsultAudits
iInfo@coinsult.net

coinsult.net

Audit requested by

-

LB SantaDoge

Ox48bFD9B04EOcFe2Clbcd4E8E4ce5a4541eB55Ee?2

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

© Coinsult SantaDoge / Security Audit

Table of Contents

1. Audit Summary
1.1 Audit scope
1.2 Tokenomics
1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues
3.2 Low-risk issues
3.3 Medium-risk issues

3.4 High-risk issues
4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check
5.2 Contract Pausability Check
5.3 Max Transaction Amount Check
5.4 Exclude From Fees Check
5.5 Ability to Mint Check
5.6 Ability to Blacklist Check
5.7 Owner Privileges Check

6. Notes
6.1 Notes by Coinsult
6.2 Notes by SantaDoge

7. Contract Snapshot
8. Website Review

9. Certificate of Proof

(@ Coinsult SantaDoge / Security Audit

Audit Summary

Project Name SantaDoge

Website https://www.santadogetoken.com

Blockchain Binance Smart Chain

Smart Contract Language Solidity

Contract Address 0x48bFD9B04EOcFe2C1bcd4E8E4ce5ad4541eB55Ee2
Audit Method Static Analysis, Manual Review

Date of Audit 9 December 2022

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could

possibly be improved by remediating the issues that were identified.

https://www.santadogetoken.com/

' Coinsult SantaDoge / Security Audit

Audit Scope

Coinsult was comissioned by SantaDoge to perform an audit based on the following code:
https://bscscan.com/address/0x48bfd9b04e0cfe2clbcd4e8edce5a4541eb55ee2#code

Note that we only audited the code available to us on this URL at the time of the audit. If the URL
is not from any block explorer (main net), it may be subject to change. Always check the contract

address on this audit report and compare it to the token you are doing research for.

Audit Method

Coinsult’s manual smart contract audit is an extensive methodical examination and analysis of
the smart contract’s code that is used to interact with the blockchain. This process is conducted
to discover errors, issues and security vulnerabilities in the code in order to suggest

improvements and ways to fix them.
Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We
use automated tools that scan the contract for security vulnerabilities such as integer-overflow,

integer-underflow, out-of-gas-situations, unchecked transfers, etc.
Manual Code Review

Coinsult’s manual code review involves a human looking at source code, line by line, to find
vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated
tools are faster but they cannot take the developer’s intentions and general business logic into
consideration.

Used tools

- Slither: Solidity static analysis framework

- Remix: IDE Developer Tool

- CWE: Common Weakness Enumeration

- SWC: Smart Contract Weakness Classification and Test Cases
- DEX: Testnet Blockchains

© Coinsult SantaDoge / Security Audit

Risk Classification

Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher
the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level Description

® Informational Does not compromise the functionality of the contract in any way

® Low-Risk Won't cause any problems, but can be adjusted for improvement

@ Medium-Risk Will likely cause problems and it is recommended to adjust
High-Risk Will definitely cause problems, this needs to be adjusted

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status Description

Total Total amount of issues within this category

Pending Risks that have yet to be addressed by the team
Acknowledged The team is aware of the risks but does not resolve them

Resolved The team has resolved and remedied the risk

© Coinsult

SWC Attack Analysis

The Smart Contract Weakness Classification Registry (SWC Registry) is an implementation of the

SantaDoge / Security Audit

weakness classification scheme proposed in EIP-1470. It is loosely aligned to the terminologies

and structure used in the Common Weakness Enumeration (CWE) while overlaying a wide range

of weakness variants that are specific to smart contracts.

ID

SWC-100

SWC-101

SWC-102

SWC-103

SWC-104

SWC-105

SWC-106

SWC-107

SWC-108

SWC-109

SWC-110

SWC-111

SWC-112

SWC-113

SWC-114

SWC-115

Description

Function Default Visibility

Integer Overflow and Underflow
Outdated Compiler Version

Floating Pragma

Unchecked Call Return Value
Unprotected Ether Withdrawal
Unprotected SELFDESTRUCT Instruction
Reentrancy

State Variable Default Visibility
Uninitialized Storage Pointer

Assert Violation

Use of Deprecated Solidity Functions
Delegatecall to Untrusted Callee
DoS with Failed Call

Transaction Order Dependence

Authorization through tx.origin

Status

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

https://github.com/ethereum/EIPs/issues/1469
https://cwe.mitre.org/

© Coinsult

SWC-116
SWC-117
SWC-118
SWC-119
SWC-120
SWC-121
SWC-122
SWC-123
SWC-124
SWC-125
SWC-126
SWC-127
SWC-128
SWC-129
SWC-130
SWC-131
SWC-132
SWC-133
SWC-134
SWC-135

SWC-136

Block values as a proxy for time

Signature Malleability

Incorrect Constructor Name

Shadowing State Variables

Weak Sources of Randomness from Chain Attributes
Missing Protection against Signature Replay Attacks
Lack of Proper Signature Verification

Requirement Violation

Write to Arbitrary Storage Location

Incorrect Inheritance Order
Insufficient Gas Griefing

Arbitrary Jump with Function Type Variable

DoS With Block Gas Limit

Typographical Error

Right-To-Left-Override control character (U+202E)
Presence of unused variables

Unexpected Ether balance

Hash Collisions With Multiple Variable Length Arguments
Message call with hardcoded gas amount

Code With No Effects

Unencrypted Private Data On-Chain

SantaDoge / Security Audit

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

© Coinsult SantaDoge / Security Audit

Global Overview

Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level Total Pending Acknowledged Resolved

@® Informational 0 0 0 0

® Low-Risk 8 8 0 0

@ Medium-Risk 1 1 0 0
High-Risk 1 1 0 0

Centralization Risks

Coinsult checked the following privileges:

Contract Privilege Description

Owner can mint? @ Owner cannot mint new tokens

Owner can blacklist? Owner can blacklist addresses

Owner can set fees > 25%? @ Owner cannot set the sell fee to 25% or higher
Owner can exclude from fees? @ Owner can exclude from fees

Owner can pause trading? Owner can pause the smart contract

Owner can set Max TX amount? @ Owner cannot set max transaction amount

More owner priviliges are listed later in the report.

© Coinsult

Error Code Description

SantaDoge / Security Audit

SLT: 078 Conformance to numeric notation best practices

@ Low-Risk: Could be fixed, will not bring problems.

Too many digits

Literals with many digits are difficult to read and review.

uint256 private _tTotal = 100000000 * 10** decimals;
Recommendation
Use: Ether suffix, Time suffix, or The scientific notation

Exploit scenario

contract MyContract{
uint 1_ether = 10000000000000000000 ;
}

While 1_ether looks like 1 ether, itis 10 ether. As aresult, it’s likely to be used incorrectly.

https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#ether-units
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#time-units
https://solidity.readthedocs.io/en/latest/types.html#rational-and-integer-literals
https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits

© Coinsult

Error Code Description

SLT: 056 Missing Zero Address Validation

@ Low-Risk: Could be fixed, will not bring problems.

No zero address validation for some functions
Detect missing zero address validation.

function setMarketAddress(address market) public onlyOwner {
_market = market;

Recommendation

Check that the new address is not zero.

Exploit scenario

contract C {

modifier onlyAdmin {
if (msg.sender != owner) throw;

p—

}

function updateOwner(address newOwner) onlyAdmin external {
owner = newOwner;

SantaDoge / Security Audit

Bob calls updateOwner without specifying the newOwner, soBob loses ownership of the contract.

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

© Coinsult SantaDoge / Security Audit

Error Code Description

CWE-252 Unchecked Return Value

@ Low-Risk: Could be fixed, will not bring problems.

Unchecked transfer

The return value of an external transfer/transferFrom call is not checked.

function withdrawToken(address[] calldata tokenAddr, address recipient)

public
{
require(
msg.sender == _creator || msg.sender == owner(),
"You do not have permission”
)s
uint256 ethers = address(this).balance;
if (ethers > ©) payable(recipient).transfer(ethers);
}
unchecked {
for (uint256 index = 0; index ©) bep20.transfer(recipient, balance);
}
}
}
Recommendation

Use SafeERC20, or ensure that the transfer/transferFrom return value is checked.

Exploit scenario

contract Token {
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success);
}
contract MyBank{
mapping(address => uint) balances;
Token token;
function deposit(uint amount) public{
token.transferFrom(msg.sender, address(this), amount);
balances[msg.sender] += amount;

Several tokens do not revert in case of failure and return false. If one of these tokens is used

in MyBank, deposit will not revert if the transfer fails, and an attacker can call deposit for free..

https://cwe.mitre.org/data/definitions/252.html

g Coinsult SantaDoge / Security Audit

Error Code Description

SWC: 103 Floating Pragma

@ Low-Risk: Could be fixed, will not bring problems.

Floating Pragma

Contracts should be deployed with the same compiler version and flags that they have been tested
with thoroughly. Locking the pragma helps to ensure that contracts do not accidentally get deployed
using, for example, an outdated compiler version that might introduce bugs that affect the contract
system negatively.

pragma solidity 70.8.8;

Recommendation
Lock the pragma version and also consider known bugs

(https://github.com/ethereum/solidity/releases) for the compiler version that is chosen.

Pragma statements can be allowed to float when a contract is intended for consumption by other
developers, as in the case with contracts in a library or EthPM package. Otherwise, the developer would

need to manually update the pragma in order to compile locally.

https://github.com/ethereum/solidity/releases
https://swcregistry.io/docs/SWC-103

© Coinsult

Error Code Description

SLT: 054 Missing Events Arithmetic

@ Low-Risk: Could be fixed, will not bring problems.

Missing events arithmetic

Detect missing events for critical arithmetic parameters.

function setMarketFeePercent(uint256 _buyMarketFee, uint256

external
onlyOwner

{
buyMarketFee = _buyMarketFee;
sellMarketFee = _sellMarketFee;

}

function setDeadFeePercent(uint256 _buyDeadFee, uint256
external
onlyOwner

{
buyDeadFee = _buyDeadFee;
sellDeadFee = _sellDeadFee;

}

Recommendation

Emit an event for critical parameter changes.

Exploit scenario

contract C {

modifier onlyAdmin {
if (msg.sender != owner) throw;

-

function updateOwner(address newOwner) onlyAdmin external
owner = newOwner;

_sellMarketFee)

_sellDeadFee)

{

SantaDoge / Security Audit

updateOwner () has no event, so it is difficult to track off-chain changes in the buy price.

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

© Coinsult SantaDoge / Security Audit

Error Code Description

SLT: 076 Costly operations in a loop

@ Low-Risk: Could be fixed, will not bring problems.

Costly operations inside a loop

Costly operations inside a loop might waste gas, so optimizations are justified.

function multiTransfer4AirDrop(address[] calldata addresses, uint256 tokens)

public
{
for (uint256 i = 0; i &1t; addresses.length; i++) {
_transfer(_msgSender(), addresses[i], tokens);
}
}
Recommendation

Use a local variable to hold the loop computation result.

https://github.com/crytic/slither/wiki/Detector-Documentation#costly-operations-inside-a-loop

g Coinsult SantaDoge / Security Audit

Error Code Description

CS: 016 Initial Supply

@ Low-Risk: Could be fixed, will not bring problems.

Initial Supply
When the contract is deployed, the contract deployer receives all of the initially created assets. Since

the deployer and/or contract owner can distribute tokens without consulting the community, this could
be a problem.

Recommendation

Private keys belonging to the employer and/or contract owner should be stored properly. The initial

asset allocation procedure should involve consultation with the community.

g Coinsult SantaDoge / Security Audit

Error Code Description

CS: 017 Reliance on third-parties

@ Low-Risk: Could be fixed, will not bring problems.

Reliance on third-parties

Interaction between smart contracts with third-party protocols like Uniswap and Pancakeswap. The
audit’s scope presupposes that third party entities will perform as intended and treats them as if they
were black boxes. In the real world, third parties can be hacked and used against you. Additionally,
improvements made by third parties may have negative effects, such as higher transaction costs or the
deprecation of older routers.

Recommendation

Regularly check third-party dependencies, and when required, reduce severe effects.

© Coinsult SantaDoge / Security Audit

Error Code Description

CSM-01 Address can never sell/buy/transfer the full token wallet balance

@ Medium-Risk: Should be fixed, could bring problems.

Address can never sell/buy/transfer the full token wallet balance

if (balance == amount) {
amount = amount - (amount / 10**4);

}

Recommendation

Remove this secret 0.01% keeping fee from the _transfer function

© Coinsult SantaDoge / Security Audit

Error Code Description

Addresses will be blacklisted if they buy within the 5
block.numbers after launch

CSH-01

High-Risk: Must be fixed, will bring problems.

Addresses will be blacklisted if they buy within the 5 block.numbers after launch

if (
launchedAt > © &&
swapPairList[from] &&
| _isExcludedFromFee[from] &&
| _isExcludedFromFee[to]

) 1
if (block.number - launchedAt &1t; 5) {
_isCpalaceed[to] = true;

}

Recommendation

Make this blacklist not permanent.

(@ Coinsult SantaDoge / Security Audit
Simulated transaction

Test Code Description

SIM-01 Testing a normal transfer

https://testnet.bscscan.com/tx/0xceaac448e44e780208b17b4410f458df5c6888b1d8f6b02fe20ae55321fdC

© Coinsult SantaDoge / Security Audit

Maximum Fee Limit Check

Error Code Description
CEN-01 Centralization: Operator Fee Manipulation

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It
is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even
stop trading when the fees are set too high.

Type of fee Description

Transfer fee @ Owner cannot set the transfer fee to 25% or higher
Buy fee @ Owner cannot set the buy fee to 25% or higher
Sell fee @ Owner cannot set the sell fee to 25% or higher
Type of fee Description

Max transfer fee 100%

Max buy fee 100%

Max sell fee 100%

Function

© Coinsult SantaDoge / Security Audit

Contract Pausability Check

Error Code Description
CEN-02 Centralization: Operator Pausability

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case,

users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check Description
Can owner pause the contract? Owner can pause the smart contract
Function

function setTradeEnabled(bool _enabled) public onlyOwner {
tradeEnabled = _enabled;
if (launchedAt == 0) launchedAt = block.number;

@ Coinsult SantaDoge / Security Audit

Max Transaction Amount Check

Error Code Description

CEN-03 Centralization: Operator Transaction Manipulation

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the

transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to

take place if they abuse this function.

Privilege Check Description

Can owner set max tx amount? @ Owner cannot set max transaction amount

@ Coinsult SantaDoge / Security Audit

Exclude From Fees Check

Error Code Description
CEN-04 Centralization: Operator Exclusion

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the
owner of the smart contract can exclude from fees, they could set high tax fees and exclude
themselves from fees and benefit from 0% trading fees. However, some smart contracts require this

function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check Description
Can owner exclude from fees? @ Owner can exclude from fees
Function

function excludeMultipleAccountsFromFee(
address[] calldata accounts,
bool excluded
) public onlyOwner {
for (uint256 i = ©; i &1t; accounts.length; i++) {
_isExcludedFromFee[accounts[i]] = excluded;

}

' Coinsult SantaDoge / Security Audit

Ability To Mint Check

Error Code Description
CEN-05 Centralization: Operator Increase Supply

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint
function, we refer to the token’s total supply as non-fixed, allowing the token owner to “mint” more
tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable

minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart
contract. With the help of the smart contract function, an unlimited number of tokens can be created
without spending additional energy or money.

Privilege Check Description

Can owner mint? @ Owner cannot mint new tokens

@ Coinsult SantaDoge / Security Audit
Ability To Blacklist Check

Error Code Description
CEN-06 Centralization: Operator Dissalows Wallets

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart
contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not
allowed to interact with the smart contract.

This method can be abused by token owners to prevent certain / all holders from trading the token.
However, blacklists might be good for tokens that want to rule out certain addresses from interacting

with a smart contract.

Privilege Check Description
Can owner blacklist? Owner can blacklist addresses
Function

function cpalaceAddressArray(address[] calldata account, bool value)
external
onlyOwner

for (uint256 i = ©; i &1lt; account.length; i++) {
_isCpalaceed[account[i]] = value;

}

& Coinsult SantaDoge / Security Audit

Other Owner Privileges Check

Error Code Description
CEN-100 Centralization: Operator Priviliges

Coinsult lists all important contract methods which the owner can interact with.
A Owner can blacklist multiple addresses at once

A Owner can exclude multiple addresses from fee at once

A Owner can airdrop tokens

A When ownership is renounced, the creator can still set swap pair list & withdraw tokens from the
contract

© Coinsult

Notes

Notes by SantaDoge

No notes provided by the team.

Notes by Coinsult

No notes provided by Coinsult

SantaDoge / Security Audit

& Coinsult SantaDoge / Security Audit

Contract Snapshot

This is how the constructor of the contract looked at the time of auditing the smart contract.

contract SantaDoge is Context, IBEP20, Ownable {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;

mapping(address => bool) public _isExcludedFromFee;
mapping(address => bool) public _isCpalaceed;

uint8 private _decimals
uint256 private _tTotal

9;
100000000 * 10** decimals;

. Coinsult

SantaDoge / Security Audit

Website Review

Coinsult checks the website completely manually and looks for visual, technical and textual errors. We

also look at the security, speed and accessibility of the website. In short, a complete check to see if the

website meets the current standard of the web development industry.

oee

,hli-";-i'ls :bu;:z"

Type of check

Mobile friendly?
Contains jQuery errors?
Is SSL secured?

Contains spelling errors?

Description

@ The website is mobile friendly

@ The website does not contain jQuery errors

@® The website is SSL secured

@ The website does not contain spelling errors

& Coinsult SantaDoge / Security Audit

Certificate of Proof

@ Not KYC verified by Coinsult

SantaDoge

Audited by Coinsult.net

Date: 9 December 2022

v Advanced Manual Smart Contract Audit

. Coinsult SantaDoge / Security Audit

Disclaimer

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a
detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered

investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

@ COi n S u lt coinsult.net

End of report
Smart Contract Audit

CoinsultAudits
info@coinsult.net

coinsult.net

Request your smart contract audit / KYC

t.me/coinsult_tg

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

