@ COi nsu lt Request your audit at coinsult.net

Advanced Manual
Smart Contract Audit

October 26, 2022

CoinsultAudits
Info@coinsult.net

coinsult.net

Audit requested by

UFCL
Ox71B0OE1fel3258C552e5F962d9D3deCF8a24d6583

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

© Coinsult UFCL / Security Audit

Table of Contents

1. Audit Summary
1.1 Audit scope
1.2 Tokenomics
1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues
3.2 Low-risk issues
3.3 Medium-risk issues
3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check
5.2 Contract Pausability Check
5.3 Max Transaction Amount Check
5.4 Exclude From Fees Check
5.5 Ability to Mint Check
5.6 Ability to Blacklist Check
5.7 Owner Privileges Check

6. Notes
6.1 Notes by Coinsult
6.2 Notes by UFCL

7. Contract Snapshot

8. Website Review

9. Certificate of Proof

8 Coinsult UFCL / Security Audit

Audit Summary

Project Name UFCL

Website https://www.ultimatefan.club/

Blockchain Binance Smart Chain

Smart Contract Language Solidity

Contract Address 0x71B0E1fe13258C552e5F962d9D3deCF8a24d6583
Audit Method Static Analysis, Manual Review

Date of Audit 26 October 2022

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could

possibly be improved by remediating the issues that were identified.

https://www.ultimatefan.club/

g Coinsult UFCL / Security Audit

Audit Scope

Source Code

Coinsult was comissioned by UFCL to perform an audit based on the following code:
https://bscscan.com/address/0x71B0E1fel13258C552e5F962d9D3deCF8a24d6583#code

Note that we only audited the code available to us on this URL at the time of the audit. If the URL
is not from any block explorer (main net), it may be subject to change. Always check the contract
address on this audit report and compare it to the token you are doing research for.

SAFU by ContractChecker

Tokenomics

Rank Address Quantity (Token) Percentage

1 0x005befe2562a83115200ce55dfc00961b2c1b437 100,000,000 100.0000%

https://bscscan.com/token/0x71B0E1fe13258C552e5F962d9D3deCF8a24d6583?a=0x005befe2562a83115200ce55dfc00961b2c1b437

' Coinsult UFCL / Security Audit

Audit Method

Coinsult’s manual smart contract audit is an extensive methodical examination and analysis of
the smart contract’s code that is used to interact with the blockchain. This process is conducted
to discover errors, issues and security vulnerabilities in the code in order to suggest

improvements and ways to fix them.

(® Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We
use automated tools that scan the contract for security vulnerabilities such as integer-overflow,

integer-underflow, out-of-gas-situations, unchecked transfers, etc.

(® Manual Code Review

Coinsult’s manual code review involves a human looking at source code, line by line, to find
vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated
tools are faster but they cannot take the developer’s intentions and general business logic into

consideration.

(® Used Tools

- Slither: Solidity static analysis framework

- Remix: IDE Developer Tool

- CWE: Common Weakness Enumeration

- SWC: Smart Contract Weakness Classification and Test Cases
- DEX: Testnet Blockchains

© Coinsult UFCL / Security Audit

Risk Classification

Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher

the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level Description

® Informational Does not compromise the functionality of the contract in any way

® Low-Risk Won't cause any problems, but can be adjusted for improvement

@® Medium-Risk Will likely cause problems and it is recommended to adjust
High-Risk Will definitely cause problems, this needs to be adjusted

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status Description

Total Total amount of issues within this category

Pending Risks that have yet to be addressed by the team
Acknowledged The team is aware of the risks but does not resolve them

Resolved The team has resolved and remedied the risk

' Coinsult UFCL / Security Audit

Disclaimer

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a

detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered

investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

© Coinsult UFCL / Security Audit

Global Overview

Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level Total Pending Acknowledged Resolved

@® Informational 0 0 0 0

® Low-Risk 6 0 6 0

@ Medium-Risk 0 0 0 0
High-Risk 0 0 0 0

Centralization Risks

Coinsult checked the following privileges:

Contract Privilege Description

Owner can mint? @ Owner cannot mint new tokens

Owner can blacklist? @ Owner cannot blacklist addresses

Owner can set fees > 25%? @ Owner cannot set the sell fee to 25% or higher
Owner can exclude from fees? @ Owner can exclude from fees

Owner can pause trading? @ Owner cannot pause the contract

Owner can set Max TX amount? @ Owner cannot set max transaction amount

More owner priviliges are listed later in the report.

© Coinsult UFCL / Security Audit

Error Code Description

CS-01 Wallets swapped

@ Low-Risk: Could be fixed, will not bring problems.

Wallets swapped

if(marketingShare > 0) {
uint256 MarketingBNB = newBalance * marketingShare / totalFee;
sendBNB(payable(deviWallet), MarketingBNB);
emit SendMarketing(MarketingBNB);

i

if(devShare > 0) {
uint256 devBNB = newBalance * devShare / totalFee;
sendBNB(payable(marketingWallet), devBNB);
emit SendDev(devBNB);

Recommendation

Marketing share is sent to dev wallet, dev share is sent to marketing wallet.

https://cwe.mitre.org/data/definitions/841.html

© Coinsult UFCL / Security Audit

Error Code Description

SLT: 078 Conformance to numeric notation best practices

@ Low-Risk: Could be fixed, will not bring problems.

Too many digits
Literals with many digits are difficult to read and review.

function updateGasForProcessing(uint256 newValue) public onlyOwner {
require(newValue >= 200000 && newValue <= 500000, "gasForProcessing must
require(newValue != gasForProcessing, "Cannot update gasForProcessing to same value&qt
emit GasForProcessingUpdated(newValue, gasForProcessing);
gasForProcessing = newValue;

Recommendation
Use: Ether suffix, Time suffix, or The scientific notation

Exploit scenario

contract MyContract{
uint 1_ether = 10000000000000000000;

}

While 1_ether looks like 1 ether,itis 10 ether. As aresult, it’s likely to be used incorrectly.

https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#ether-units
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#time-units
https://solidity.readthedocs.io/en/latest/types.html#rational-and-integer-literals
https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits

© Coinsult UFCL / Security Audit

Error Code Description

SLT: 056 Missing Zero Address Validation

@ Low-Risk: Could be fixed, will not bring problems.

No zero address validation for some functions

Detect missing zero address validation.

function changeDevWallet(address _devWallet) external onlyOwner {
require(_devWallet !'= devWallet, "Dev wallet is already that address");
devWallet = _devWallet;
emit DeviNalletChanged(devWallet);

}

function changeMarketing(address _marketingWallet) external onlyOwner {
require(_marketingWallet != marketingWallet, "Marketing wallet is already that address™);
marketingWallet = _marketingWallet;
emit MarketingWalletChanged(marketingWallet);

Recommendation
Check that the new address is not zero.

Exploit scenario

contract C {

modifier onlyAdmin {
if (msg.sender != owner) throw;
=9

}

function updateOwner(address newOwner) onlyAdmin external {
owner = newOwner;

3
3

Bob calls updateOwner without specifying the newOwner, soBob loses ownership of the contract.

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

© Coinsult UFCL / Security Audit

Error Code Description

SWC-104 CWE-252: Unchecked Return Value

@ Low-Risk: Could be fixed, will not bring problems.

Unchecked transfer

The return value of an external transfer/transferFrom call is not checked.

function claimStuckTokens(address token) external onlyOwner {
require(token != address(this), "Owner cannot claim native tokens");
if (token == address(0x0)) {

payable(msg.sender).transfer(address(this).balance);
return;

}

TERC20 ERC20token = IERC20(token);

uint256 balance = ERC20token.balanceOf(address(this));
ERC20token.transfer(msg.sender, balance);

Recommendation

Use SafeERC20, or ensure that the transfer/transferFrom return value is checked.

Exploit scenario

contract Token {
function transferFrom(address _from, address _to, uint256 _value) public returns (bool succ

%
contract MyBank{
mapping(address => uint) balances;
Token token;
function deposit(uint amount) public{
token. transferFrom(msg.sender, address(this), amount);
balances[msg.sender] += amount;

Several tokens do not revert in case of failure and return false. If one of these tokens is used

in MyBank, deposit will not revert if the transfer fails, and an attacker can call deposit for free..

https://cwe.mitre.org/data/definitions/252.html

© Coinsult UFCL / Security Audit

Error Code Description

SLT: 054 Missing Events Arithmetic

@ Low-Risk: Could be fixed, will not bring problems.

Missing events arithmetic

Detect missing events for critical arithmetic parameters.

require(walletToWalletTransferWithoutFee != enable, "Wallet to wallet transfer without fee is ¢
walletToWalletTransferWithoutFee = enable;
3
Recommendation

Emit an event for critical parameter changes.

Exploit scenario

contract C {

modifier onlyAdmin {
if (msg.sender != owner) throw;

}

function updateOwner(address newOwner) onlyAdmin external {
owner = newOwner;

3
3

updateOwner() has no event, so it is difficult to track off-chain changes in the buy price.

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

© Coinsult UFCL / Security Audit

Error Code Description
SLT: 068 Conformity to Solidity naming conventions

@ Low-Risk: Could be fixed, will not bring problems.

Conformance to Solidity naming conventions
Allow _ at the beginning of the mixed_case match for private variables and unused parameters.

function updateBuyFees(uint256 _DevFeeOnBuy,uint256 _MarketingFeeOnBuy, uint256 _TreasuryFeeOnE
DevFeeOnBuy = _DevFeeOnBuy;

TreasuryFeeOnBuy = _TreasuryFeeOnBuy;
MarketingFeeOnBuy = _MarketingFeeOnBuy;
_totalFeesOnBuy = DevFeeOnBuy + MarketingFeeOnBuy + TreasuryFeeOnBuy;

require(
_totalFeesOnBuy + _totalFeesOnSell <= 25,
"Fees must be less than 25%"

D5
emit UpdateBuyFees(_DevFeeOnBuy, _MarketingFeeOnBuy, _TreasuryFeeOnBuy);
ks
Recommendation

Follow the Solidity naming convention.

Rule exceptions

¢ Allow constant variable name/symbol/decimals to be lowercase (ERC20).

e Allow _ at the beginning of the mixed_case match for private variables and unused parameters.

https://solidity.readthedocs.io/en/v0.4.25/style-guide.html#naming-conventions
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

© Coinsult UFCL / Security Audit

Maximum Fee Limit Check

Error Code Description
CEN-01 Centralization: Operator Fee Manipulation

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It
is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even
stop trading when the fees are set too high.

Type of fee Description
Transfer fee @ Owner cannot set the transfer fee to 25% or higher
Buy fee @ Owner cannot set the buy fee to 25% or higher
Sell fee @ Owner cannot set the sell fee to 25% or higher
Type of fee Description
Max transfer fee 25%
Max buy fee 25%
Max sell fee 25%
Function

function updateSellFees(uint256 _DevFeeOnSell,uint256 _MarketingFeeOnSell, uint256 _TreasuryFee
DevFeeOnSell = _DevFeeOnSell;

TreasuryFeeOnSell = _TreasuryFeeOnSell;
MarketingFeeOnSell = _MarketingFeeOnSell;
_totalFeesOnSell = DevFeeOnSell + MarketingFeeOnSell + TreasuryFeeOnSell;

require(
_totalFeesOnBuy + _totalFeesOnSell <= 25,
"Fees must be less than 25%"
D5
emit UpdateSellFees(_DevFeeOnSell, _MarketingFeeOnSell, _TreasuryFeeOnSell);

S Coinsult UFCL / Security Audit
Contract Pausability Check
Error Code Description

CEN-02 Centralization: Operator Pausability

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case,
users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check Description

Can owner pause the contract? @ Owner cannot pause the contract

8 Coinsult UFCL / Security Audit

Max Transaction Amount Check

Error Code Description

CEN-03 Centralization: Operator Transaction Manipulation

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the
transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to

take place if they abuse this function.

Privilege Check Description

Can owner set max tx amount? @ Owner cannot set max transaction amount

8 Coinsult UFCL / Security Audit

Exclude From Fees Check

Error Code Description
CEN-04 Centralization: Operator Exclusion

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the
owner of the smart contract can exclude from fees, they could set high tax fees and exclude
themselves from fees and benefit from 0% trading fees. However, some smart contracts require this

function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check Description
Can owner exclude from fees? @ Owner can exclude from fees
Function

function excludeFromFees(address account) external onlyOwner {
require(!_isExcludedFromFees[account], "Account is already the value of 'excluded'");
_isExcludedFromFees[account] = true;

emit ExcludeFromFees(account, true);

g Coinsult UFCL / Security Audit

Ability To Mint Check

Error Code Description
CEN-05 Centralization: Operator Increase Supply

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint
function, we refer to the token’s total supply as non-fixed, allowing the token owner to “mint” more

tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable

minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart
contract. With the help of the smart contract function, an unlimited number of tokens can be created
without spending additional energy or money.

Privilege Check Description

Can owner mint? @ Owner cannot mint new tokens

8 Coinsult UFCL / Security Audit

Ability To Blacklist Check

Error Code Description

CEN-06 Centralization: Operator Dissalows Wallets

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart
contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not

allowed to interact with the smart contract.

This method can be abused by token owners to prevent certain / all holders from trading the token.
However, blacklists might be good for tokens that want to rule out certain addresses from interacting

with a smart contract.

Privilege Check Description

Can owner blacklist? @ Owner cannot blacklist addresses

© Coinsult UFCL / Security Audit

Other Owner Privileges Check

Error Code Description

CEN-100 Centralization: Operator Priviliges

Coinsult lists all important contract methods which the owner can interact with.

A Owner can add rewards token

2 Coinsult

Notes

Notes by UFCL

No notes provided by the team.

Notes by Coinsult

No notes provided by Coinsult

UFCL / Security Audit

2 Coinsult

Contract Snapshot

UFCL / Security Audit

This is how the constructor of the contract looked at the time of auditing the smart contract.

contract UFCL is ERC20, Ownable {

uint256
uint256

uint256
uint256

uint256
uint256

uint256
uint256

address
address

address

bool

public TreasuryFeeOnBuy = 3;
public TreasuryFeeOnSell = 3;
public DevFeeOnBuy = 2;
public DevFeeOnSell = 2;

public MarketingFeeOnBuy = 1;
public MarketingFeeOnSell = 2;
private _totalFeesOnBuy = 6;
private _totalFeesOnSell = 75

public deviWallet = 0x26986A51015Acal9Fd34105e180447DCa6CC510e;
public marketingWallet = 0x1445626C7F67594e73f1748822767653159b05f8;
public BUSD_ADDRESS = 0Oxe9e7CEA3DedcA5984780Bafc599bD69ADA0O87D56;

public walletToWalletTransferWithoutFee;

IUniswapVZ2Router@2 public uniswapVZRouter;

address

address

bool
uint256
bool
bool

public uniswapV2Pair;
private DEAD = 0x000000000000000000000000000000000000dEaD;

private swapping;

public swapTokensAtAmount;
public swapEnabled=true;
public swapWithLimit;

. Coinsult UFCL / Security Audit

Website Review

Coinsult checks the website completely manually and looks for visual, technical and textual errors. We
also look at the security, speed and accessibility of the website. In short, a complete check to see if the
website meets the current standard of the web development industry.

Dapps Why Us Mer. ise T i R Partners

BE AN
ULTIMATE FAN!

Ultimate fanclub is the first
Blockchain project that is driven at
guenching the unending thirst for
supporting their favourite team/club
unlimitedly and rewarding their loyalty
in various ways.

©@©0 0@

$Lazio $5PG $auv $Porto $ASR $ATH $Santos $06 $Alpine

Type of check Description

Mobile friendly? @ The website is mobile friendly

Contains jQuery errors? @ The website does not contain jQuery errors
Is SSL secured? @ The website is SSL secured

Contains spelling errors? @ The website does not contain spelling errors

© Coinsult UFCL / Security Audit

Certificate of Proof

@ Not KYC verified by Coinsult

UFCL

Audited by Coinsult.net

Date: 26 October 2022

v Advanced Manual Smart Contract Audit

@ COi n S u lt coinsult.net

End of report
Smart Contract Audit

CoinsultAudits
info@coinsult.net

coinsult.net

Request your smart contract audit / KYC

t.me/coinsult_tg

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

