
Coinsult

Advanced Manual

Smart Contract Audit
October 26, 2022

 CoinsultAudits

 info@coinsult.net

 coinsult.net

Audit requested by

UniLeague

0xeF926A318a6ac6c28A61353e09fB7273D204C425

Request your audit at coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

Table of Contents
1. Audit Summary

1.1 Audit scope

1.2 Tokenomics

1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues

3.2 Low-risk issues

3.3 Medium-risk issues

3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check

5.2 Contract Pausability Check

5.3 Max Transaction Amount Check

5.4 Exclude From Fees Check

5.5 Ability to Mint Check

5.6 Ability to Blacklist Check

5.7 Owner Privileges Check

6. Notes
6.1 Notes by Coinsult

6.2 Notes by UniLeague

7. Contract Snapshot

8. Website Review

9. Certificate of Proof

UniLeague / Security Audit

Audit Summary
Project Name

Website

Blockchain

Smart Contract Language

Contract Address

Audit Method

Date of Audit

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

UniLeague / Security Audit

UniLeague

https://unileague.io/

Binance Smart Chain

Solidity

0xeF926A318a6ac6c28A61353e09fB7273D204C425

Static Analysis, Manual Review

26 October 2022

https://unileague.io/

Audit Scope
Source Code

Coinsult was comissioned by UniLeague to perform an audit based on the following code:

https://bscscan.com/address/0xeF926A318a6ac6c28A61353e09fB7273D204C425#code

Note that we only audited the code available to us on this URL at the time of the audit. If the URL
is not from any block explorer (main net), it may be subject to change. Always check the contract
address on this audit report and compare it to the token you are doing research for.

Tokenomics

Rank Address Quantity (Token) Percentage

1  Pinksale: PinkLock V2 900,000,000,000 90.0000%

2  0xcda7dfd25e0593940456f37cb59e447fd86cd9a4 80,400,000,000 8.0400%

3 0x9d4101a30b3bee1a4beba06ed9fbcf0769b50324 19,600,000,000 1.9600%

UniLeague / Security Audit

https://bscscan.com/token/0xeF926A318a6ac6c28A61353e09fB7273D204C425?a=0x407993575c91ce7643a4d4ccacc9a98c36ee1bbe
https://bscscan.com/token/0xeF926A318a6ac6c28A61353e09fB7273D204C425?a=0xcda7dfd25e0593940456f37cb59e447fd86cd9a4
https://bscscan.com/token/0xeF926A318a6ac6c28A61353e09fB7273D204C425?a=0x9d4101a30b3bee1a4beba06ed9fbcf0769b50324

Audit Method
Coinsult’s manual smart contract audit is an extensive methodical examination and analysis of
the smart contract’s code that is used to interact with the blockchain. This process is conducted
to discover errors, issues and security vulnerabilities in the code in order to suggest
improvements and ways to fix them.

 Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We
use automated tools that scan the contract for security vulnerabilities such as integer-overflow,
integer-underflow, out-of-gas-situations, unchecked transfers, etc.

 Manual Code Review

Coinsult’s manual code review involves a human looking at source code, line by line, to find
vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated
tools are faster but they cannot take the developer’s intentions and general business logic into
consideration.

 Used Tools

 Slither: Solidity static analysis framework
 Remix: IDE Developer Tool
 CWE: Common Weakness Enumeration
 SWC: Smart Contract Weakness Classification and Test Cases
 DEX: Testnet Blockchains

UniLeague / Security Audit

Risk Classification
Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher
the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status

Total

Pending

Acknowledged

Resolved

UniLeague / Security Audit

Description

Does not compromise the functionality of the contract in any way

Won't cause any problems, but can be adjusted for improvement

Will likely cause problems and it is recommended to adjust

Will definitely cause problems, this needs to be adjusted

Description

Total amount of issues within this category

Risks that have yet to be addressed by the team

The team is aware of the risks but does not resolve them

The team has resolved and remedied the risk

Disclaimer
This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a
detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered
investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

UniLeague / Security Audit

Global Overview
Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Centralization Risks

Coinsult checked the following privileges:

Contract Privilege

Owner can mint?

Owner can blacklist?

Owner can set fees > 25%?

Owner can exclude from fees?

Owner can pause trading?

Owner can set Max TX amount?

More owner priviliges are listed later in the report.

UniLeague / Security Audit

Total Pending Acknowledged Resolved

0 0 0 0

5 5 0 0

1 1 0 0

0 0 0 0

Description

 Owner cannot mint new tokens

 Owner cannot blacklist addresses

 Owner can set the sell fee to 25% or higher

 Owner can exclude from fees

 Owner cannot pause the contract

 Owner can set max transaction amount

Error Code

CS-01

 Low-Risk: Could be fixed, will not bring problems.

Unecessary function call for fee excluded addresses

function function _tokenTransfer_tokenTransfer((address senderaddress sender,, address recipient address recipient,, uint256 amount uint256 amount,,bool takeFeebool takeFee)) privateprivate {{

 ifif((!!takeFeetakeFee))

 removeAllFeeremoveAllFee(());;

 ifif ((_isExcluded_isExcluded[[sendersender]] & &;&&; !!_isExcluded_isExcluded[[recipientrecipient]])) {{

 _transferFromExcluded_transferFromExcluded((sendersender,, recipient recipient,, amount amount));;

 }} elseelse ifif ((!!_isExcluded_isExcluded[[sendersender]] & &;&&; _isExcluded _isExcluded[[recipientrecipient]])) {{

 _transferToExcluded_transferToExcluded((sendersender,, recipient recipient,, amount amount));;

 }} elseelse ifif ((_isExcluded_isExcluded[[sendersender]] & &;&&; _isExcluded _isExcluded[[recipientrecipient]])) {{

 _transferBothExcluded_transferBothExcluded((sendersender,, recipient recipient,, amount amount));;

 }} elseelse {{

 _transferStandard_transferStandard((sendersender,, recipient recipient,, amount amount));;

 }}

 ifif((!!takeFeetakeFee))

 restoreAllFeerestoreAllFee(());;

}}

Recommendation
RemoveAllFee() is called when the TakeFee variable is False. But when sending from or to an address
which is excluded from fee, we already know the fees are set to zero. So rewrite the function
_tokenTransfer in a proper manner so that the removeAllFee() function will not be called unnecessary.

UniLeague / Security Audit

Description

Unecessary function call for fee excluded addresses

https://cwe.mitre.org/data/definitions/841.html

Error Code

SWC-107

 Low-Risk: Could be fixed, will not bring problems.

Contract contains Reentrancy vulnerabilities
Additional information: This combination increases risk of malicious intent. While it may be justified by
some complex mechanics (e.g. rebase, reflections, buyback).

function function _transfer_transfer((

 address from address from,,

 address address toto,,

 uint256 amount uint256 amount

)) privateprivate {{

 requirerequire((from from !=!= addressaddress((00)),, "ERC20: transfer from the zero address""ERC20: transfer from the zero address"));;

 requirerequire((toto !=!= addressaddress((00)),, "ERC20: transfer to the zero address""ERC20: transfer to the zero address"));;

 requirerequire((amount >amount >; 00,, "Transfer amount must be greater than zero""Transfer amount must be greater than zero"));;

 ifif((from from !=!= ownerowner(()) & &;&&; toto !=!= ownerowner(()))) {{

 requirerequire((amount amount == minimumTokensBeforeSwap minimumTokensBeforeSwap;;

 ifif ((!!inSwapAndLiquify &inSwapAndLiquify &;&&; swapAndLiquifyEnabled & swapAndLiquifyEnabled &;&&; toto ==== uniswapV2Pair uniswapV2Pair)) {{

 ifif ((overMinimumTokenBalanceoverMinimumTokenBalance)) {{

 contractTokenBalance contractTokenBalance == minimumTokensBeforeSwap minimumTokensBeforeSwap;;

 swapTokensswapTokens((contractTokenBalancecontractTokenBalance));;

 }}

Recommendation
Apply the check-effects-interactions pattern.

Exploit scenario

function function withdrawBalancewithdrawBalance(()){{

 // send userBalance[msg.sender] Ether to msg.sender// send userBalance[msg.sender] Ether to msg.sender

 // if mgs.sender is a contract, it will call its fallback function// if mgs.sender is a contract, it will call its fallback function

 ifif((!! ((msgmsg..sendersender..callcall..valuevalue((userBalanceuserBalance[[msgmsg..sendersender]]))(()))))){{

 throwthrow;;

 }}

 userBalance userBalance[[msgmsg..sendersender]] == 00;;

}}

Bob uses the re-entrancy bug to call withdrawBalance two times, and withdraw more than its initial
deposit to the contract.

UniLeague / Security Audit

Description

CWE-841: Improper Enforcement of Behavioral Workflow

https://cwe.mitre.org/data/definitions/841.html

Error Code

SLT: 054

 Low-Risk: Could be fixed, will not bring problems.

Missing events arithmetic
Detect missing events for critical arithmetic parameters.

function function setMaxTxAmountsetMaxTxAmount((uint256 maxTxAmountuint256 maxTxAmount)) externalexternal onlyOwneronlyOwner(()) {{

 requirerequire((maxTxAmount >maxTxAmount >; uint256uint256((5050 ** 1010****55 ** 1010****99)),, "Amount is too small!""Amount is too small!"));;

 _maxTxAmount _maxTxAmount == maxTxAmount maxTxAmount;;

}}

Recommendation
Emit an event for critical parameter changes.

Exploit scenario

contract C contract C {{

 modifier onlyAdmin modifier onlyAdmin {{

 ifif ((msgmsg..sender sender !=!= owner owner)) throwthrow;;

 _ _;;

 }}

 function function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin onlyAdmin externalexternal {{

 owner owner == newOwner newOwner;;

 }}

}}

updateOwner() has no event, so it is difficult to track off-chain changes in the buy price.

UniLeague / Security Audit

Description

Missing Events Arithmetic

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

Error Code

SWC-135

 Low-Risk: Could be fixed, will not bring problems.

Code With No Effects
Detect the usage of redundant statements that have no effect.

function function _msgData_msgData(()) internalinternal view virtual view virtual returnsreturns ((bytes memorybytes memory)) {{

 thisthis;; // silence state mutability warning without generating bytecode - see https://github.com/ether// silence state mutability warning without generating bytecode - see https://github.com/ether
 returnreturn msg msg..datadata;;

}}

Recommendation
Remove redundant statements if they congest code but offer no value.

Exploit scenario

contract RedundantStatementsContract contract RedundantStatementsContract {{

 constructorconstructor(()) publicpublic {{

 uint uint;; // Elementary Type Name// Elementary Type Name

 bool bool;; // Elementary Type Name// Elementary Type Name

 RedundantStatementsContract RedundantStatementsContract;; // Identifier// Identifier

 }}

 function function testtest(()) publicpublic returnsreturns ((uintuint)) {{

 uint uint;; // Elementary Type Name// Elementary Type Name

 assert assert;; // Identifier// Identifier

 test test;; // Identifier// Identifier

 returnreturn 777777;;

 }}

}}

Each commented line references types/identifiers, but performs no action with them, so no code will
be generated for such statements and they can be removed.

UniLeague / Security Audit

Description

CWE-1164: Irrelevant Code

https://cwe.mitre.org/data/definitions/1164.html

Error Code

SLT: 076

 Low-Risk: Could be fixed, will not bring problems.

Costly operations inside a loop
Costly operations inside a loop might waste gas, so optimizations are justified.

function function includeInRewardincludeInReward((address accountaddress account)) externalexternal onlyOwneronlyOwner(()) {{

 requirerequire((_isExcluded_isExcluded[[accountaccount]],, "Account is already included""Account is already included"));;

 forfor ((uint256 i uint256 i == 00;; i < i <; _excluded _excluded..lengthlength;; i i++++)) {{

 ifif ((_excluded_excluded[[ii]] ==== account account)) {{

 _excluded _excluded[[ii]] == _excluded _excluded[[_excluded_excluded..length length -- 11]];;

 _tOwned _tOwned[[accountaccount]] == 00;;

 _isExcluded _isExcluded[[accountaccount]] == falsefalse;;

 _excluded _excluded..poppop(());;

 breakbreak;;

 }}

 }}

}}

Recommendation
Use a local variable to hold the loop computation result.

Exploit scenario

contract CostlyOperationsInLoopcontract CostlyOperationsInLoop{{

 function function badbad(()) externalexternal{{

 forfor ((uint iuint i==00;; i i << loop_count loop_count;; i i++++)){{

 state_variable state_variable++++;;

 }}

 }}

 function function goodgood(()) externalexternal{{

 uint local_variable uint local_variable == state_variable state_variable;;

 forfor ((uint iuint i==00;; i i << loop_count loop_count;; i i++++)){{
 local_variable local_variable++++;;

 }}

 state_variable state_variable == local_variable local_variable;;

 }}

}}

Incrementing state_variable in a loop incurs a lot of gas because of expensive SSTOREs, which might
lead to an out-of-gas.

UniLeague / Security Audit

Description

Costly operations in a loop

https://github.com/crytic/slither/wiki/Detector-Documentation#costly-operations-inside-a-loop

Error Code

CSM-01

 Medium-Risk: Should be fixed, could bring problems.

Owner can exclude a maximum of 250 addresses from reward. If the owner wants to
exclude more addresses this is not possible.

function function excludeFromRewardexcludeFromReward((address accountaddress account)) publicpublic onlyOwneronlyOwner(()) {{

 requirerequire((_excluded_excluded..length length 00)) {{

 _tOwned _tOwned[[accountaccount]] == tokenFromReflectiontokenFromReflection((_rOwned_rOwned[[accountaccount]]));;

 }}

 _isExcluded _isExcluded[[accountaccount]] == truetrue;;

 _excluded _excluded..pushpush((accountaccount));;

}}

Recommendation
Create a different function in order to exclude more addresses from reward if necessary

UniLeague / Security Audit

Description
Owner can exclude a maximum of 250 addresses from reward.
If the owner wants to exclude more addresses this is not
possible.

Maximum Fee Limit Check

Error Code

CEN-01

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It
is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even
stop trading when the fees are set too high.

Type of fee

Transfer fee

Buy fee

Sell fee

Type of fee

Max transfer fee

Max buy fee

Max sell fee

Function

function function setLiquidityFeePercentsetLiquidityFeePercent((uint256 liquidityFeeuint256 liquidityFee)) externalexternal onlyOwneronlyOwner(()) {{

 _liquidityFee _liquidityFee == liquidityFee liquidityFee;;

 }}

function function setTaxFeePercentsetTaxFeePercent((uint256 taxFeeuint256 taxFee)) externalexternal onlyOwneronlyOwner(()) {{

 _taxFee _taxFee == taxFee taxFee;;

 }}

UniLeague / Security Audit

Description

Centralization: Operator Fee Manipulation

Description

 Owner can set the transfer fee to 25% or higher

 Owner can set the buy fee to 25% or higher

 Owner can set the sell fee to 25% or higher

Description

100%

100%

100%

Contract Pausability Check

Error Code

CEN-02

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case,
users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check

Can owner pause the contract?

UniLeague / Security Audit

Description

Centralization: Operator Pausability

Description

 Owner cannot pause the contract

Max Transaction Amount Check

Error Code

CEN-03

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the
transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to
take place if they abuse this function.

Privilege Check

Can owner set max tx amount?

Function

function function setMaxTxAmountsetMaxTxAmount((uint256 maxTxAmountuint256 maxTxAmount)) externalexternal onlyOwneronlyOwner(()) {{

 requirerequire((maxTxAmount >maxTxAmount >; uint256uint256((5050 ** 1010****55 ** 1010****99)),, "Amount is too small!""Amount is too small!"));;

 _maxTxAmount _maxTxAmount == maxTxAmount maxTxAmount;;

}}

UniLeague / Security Audit

Description

Centralization: Operator Transaction Manipulation

Description

 Owner can set max transaction amount

Exclude From Fees Check

Error Code

CEN-04

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the
owner of the smart contract can exclude from fees, they could set high tax fees and exclude
themselves from fees and benefit from 0% trading fees. However, some smart contracts require this
function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check

Can owner exclude from fees?

Function

function function excludeFromFeeexcludeFromFee((address accountaddress account)) publicpublic onlyOwner onlyOwner {{

 _isExcludedFromFee _isExcludedFromFee[[accountaccount]] == truetrue;;

}}

UniLeague / Security Audit

Description

Centralization: Operator Exclusion

Description

 Owner can exclude from fees

Ability To Mint Check

Error Code

CEN-05

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint
function, we refer to the token’s total supply as non-fixed, allowing the token owner to “mint” more
tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable
minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart
contract. With the help of the smart contract function, an unlimited number of tokens can be created
without spending additional energy or money.

Privilege Check

Can owner mint?

UniLeague / Security Audit

Description

Centralization: Operator Increase Supply

Description

 Owner cannot mint new tokens

Ability To Blacklist Check

Error Code

CEN-06

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart
contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not
allowed to interact with the smart contract.

This method can be abused by token owners to prevent certain / all holders from trading the token.
However, blacklists might be good for tokens that want to rule out certain addresses from interacting
with a smart contract.

Privilege Check

Can owner blacklist?

UniLeague / Security Audit

Description

Centralization: Operator Dissalows Wallets

Description

 Owner cannot blacklist addresses

Other Owner Privileges Check

Error Code

CEN-100

Coinsult lists all important contract methods which the owner can interact with.

 Owner can initiate prepareForPresale function even when the presale has already launched

UniLeague / Security Audit

Description

Centralization: Operator Priviliges

Notes
Notes by UniLeague

Excluding from reward means excluding from redistribution to holders and we don’t use redistribution
even though we have the function. So limiting exclude function is not risky and we will never use the
function.

Regarding the max transaction amount this is for preventing harmful sized whales. We cannot stop
transactions because function has a minimum limit requirement.

Notes by Coinsult

No notes provided by Coinsult

UniLeague / Security Audit

Contract Snapshot
This is how the constructor of the contract looked at the time of auditing the smart contract.

contract UniLeague contract UniLeague isis Context Context,, IERC20 IERC20,, Ownable Ownable {{

using SafeMath using SafeMath forfor uint256 uint256;;

using Address using Address forfor address address;;

address payable address payable publicpublic marketingAddress marketingAddress == payablepayable((0xE26a1b25707AF32Fe3AE751c41A275f24e1Bae180xE26a1b25707AF32Fe3AE751c41A275f24e1Bae18));; // Market// Market
address address publicpublic constant deadAddress constant deadAddress == 0x000000000000000000000000000000000000dEaD0x000000000000000000000000000000000000dEaD;;

mappingmapping ((address address ==>>; uint256 uint256)) privateprivate _rOwned _rOwned;;

mappingmapping ((address address ==>>; uint256 uint256)) privateprivate _tOwned _tOwned;;

mappingmapping ((address address ==>>; mappingmapping ((address address ==>>; uint256 uint256)))) privateprivate _allowances _allowances;;

mappingmapping ((address address ==>>; bool bool)) privateprivate _isExcludedFromFee _isExcludedFromFee;;

mappingmapping ((address address ==>>; bool bool)) privateprivate _isExcluded _isExcluded;;

addressaddress[[]] privateprivate _excluded _excluded;;

UniLeague / Security Audit

Website Review
Coinsult checks the website completely manually and looks for visual, technical and textual errors. We
also look at the security, speed and accessibility of the website. In short, a complete check to see if the
website meets the current standard of the web development industry.

Type of check

Mobile friendly?

Contains jQuery errors?

Is SSL secured?

Contains spelling errors?

UniLeague / Security Audit

Description

 The website is mobile friendly

 The website does not contain jQuery errors

 The website is SSL secured

 The website does not contain spelling errors

Certificate of Proof
 Not KYC verified by Coinsult

UniLeague
Audited by Coinsult.net

Date: 26 October 2022
 Advanced Manual Smart Contract Audit

UniLeague / Security Audit

Coinsult

End of report

Smart Contract Audit
 CoinsultAudits

 info@coinsult.net

 coinsult.net

Request your smart contract audit / KYC

t.me/coinsult_tg

coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

